Презентация к уроку по алгебре и началам анализа на тему " Комбинаторика: перемещения,перестановки,сочетания". Презентация на тему "сочетания" По формуле умножения вероятностей получим

КОМБИНАТОРИКА


Цели урока:

  • Узнать, что изучает комбинаторика
  • Узнать,как возникла комбинаторика
  • Изучить формулы комбинаторики и научиться применять их при решении задач

Рождение комбинаторики как раздела математики связано с трудами Блеза Паскаля и Пьера Ферма по теории азартных игр.

Блез Паскаль

Пьер Ферма


Большой вклад в развитие комбинаторных методов внесли Г.В. Лейбниц, Я. Бернулли и Л. Эйлер.

Г.В. Лейбниц

Л. Эйлер.

Я. Бернулли


Лемма. Пусть в множестве A m элементов, а в множестве B - n элементов. Тогда число всех различных пар (a,b), где a\in A,b\in B будет равно mn. Доказательство. Действительно, с одним элементом из множества A мы можем составить n таких различных пар, а всего в множестве A m элементов.


Размещения, перестановки, сочетания Пусть у нас есть множество из трех элементов a,b,c. Какими способами мы можем выбрать из этих элементов два? ab,ac,bc,ba,ca,cb.


Перестановки Будем переставлять их всеми возможными способами (число объектов остается неизменными, меняется только их порядок). Получившиеся комбинации называются перестановками, а их число равно Pn = n! =1 · 2 · 3 · ... · ( n-1)·n


Символ n! называется факториалом и обозначает произведение всех целых чисел от 1 до n. По определению, считают, что 0!=1 1!=1 Пример всех перестановок из n=3 объектов (различных фигур) - на картинке. Согласно формуле, их должно быть ровно P3=3!=1⋅2⋅3=6 , так и получается.


С ростом числа объектов количество перестановок очень быстро растет и изображать их наглядно становится затруднительно. Например, число перестановок из 10 предметов - уже 3628800 (больше 3 миллионов!).


Размещения Пусть имеется n различных объектов. Будем выбирать из них m объектов и переставлять всеми возможными способами между собой (то есть меняется и состав выбранных объектов, и их порядок). Получившиеся комбинации называются размещениями из n объектов по m, а их число равно Aⁿm =n!(n−m)!=n⋅(n−1)⋅...⋅(n−m+1)


Определение. Размещениями множества из n различных элементов по m элементов (m n) называются комбинации , которые составлены из данных n элементов по m элементов и отличаются либо самими элементами, либо порядком элементов.


Сочетания Пусть имеется n различных объектов. Будем выбирать из них m объектов всевозможными способами (то есть меняется состав выбранных объектов, но порядок не важен). Получившиеся комбинации называются сочетаниями из n объектов по m, а их число равно Cmn=n!(n−m)!⋅m!


Пример всех сочетаний из n=3объектов (различных фигур) по m=2- на картинке снизу. Согласно формуле, их должно быть ровно C23=3!(3−2)!⋅2!:3!=3. Ясно, что сочетаний всегда меньше чем размещений (так как при размещениях порядок важен, а для сочетаний - нет), причем именно в m! раз, то есть верна формула связи: Amn=Cmn⋅Pm.




Способ 1 . В одной игре участвуют 2 человека, следовательно, нужно вычислить, сколькими способами можно отобрать 2-х человек из 15, причем порядок в таких парах не важен. Воспользуемся формулой для нахождения числа сочетаний (выборок, отличающихся только составом) из n различных элементов по m элементов

n!= 1⋅ 2 ⋅3⋅...⋅ n , при n=2, m=13.


Способ 2. Первый игрок сыграл 14 партий (с2-м, 3-м, 4-м, и так до 15-го), 2- ой игрок сыграл 13 партий (3-м, 4-м, и т.д. до 15-го, исключаем то, что с первым партия уже была), 3-ий игрок − 12 партий, 4-ый − 11 партий, 5 – 10 партий, 6 – 9 партий, 7 – 8 партий, 8 – 7 партий,

а 15-ый уже играл со всеми.

Итого: 14+13+12+11+10+9+8+7+6+5+4+3+2+1=105 партий

ОТВЕТ. 105 партий.


Учитель математики Аксёнова Светлана Валерьевна

Бугровская СОШ Всеволожского района Ленинградской области

Перестановки Размещения Сочетания Вероятность

МОУ СШ № 30 г.Волгоград

Учитель математики Склейнова Н.И.


Факториал

Определение 1

Факториалом называется произведение первых n натуральных чисел

n! = 1*2*2*…(n-2)(n-1)n

2!=1*2=2

3!=1*2*3=6

4!= 1*2*3*4=24

5!=1*2*3*4*5=120


Перестановки

Определение 2

Перестановкой из n элементов называется каждое расположение этих элементов в определенном порядке Р=n!

Пример 1

Сколькими способами могут быть расставлены 8 участниц финального забега на восьми беговых дорожках?

Р 8 =8!=1*2*3*4*5*6*7*8= 40320(способов)


Размещения

Определение 3

Размещением из n элементов по k (k≤ n) называется любое множество, состоящее из любых k элементов, взятых в определенном порядке из данных n элементов

Пример 2

Учащиеся второго класса изучают 8 предметов. Сколькими способами можно составить расписание на один день, чтобы в нем было 4 различных предмета?

А 8 4 =8*7*6*5= 1680 (способов)

А n k =


Сочетания

Определение 4

Сочетанием из n элементов по k называется любое множество, составленное из k элементов, выбранных из данных n элементов

С n k =

Пример 3

Из 15 членов туристической группы надо выбрать трех дежурных. Сколькими способами можно сделать этот выбор?

С 15 3 =15!/(3!*12!)=(13*14*15)/(1*2*3)= 455(способов)


Вероятность

Определение 5

Вероятностью события А называется отношение числа благоприятных для него исходов N(А) испытания к числу всех равновозможных исходов N

Р(А)= N(А)/N

Пример 4

Из 25 экзаменационных билетов по геометрии ученик подготовил 11 первых и 8 последних билетов. Какова вероятность того, что на экзамене ему достанется билет, который он не подготовил?

Р(А)=(25-11-8)/25= 0,24


Сложение вероятностей

Определение 6

Если событие С означает, что наступает одно из двух несовместных событий: А или В, то вероятность события С равна сумме вероятностей событий А и В

Р(С)=Р(А)+Р(В)

Сумма вероятностей противоположных событий равна 1

Р(А)+Р( А )=1


Умножение вероятностей

Определение 7

Если событие С означает совместное наступление двух независимых событий А и В, то вероятность события С равна произведению вероятностей событий А и В

Р(С)=Р(А)*Р(В)


Вероятность

Сумма вероятностей

Сумма вероятностей двух событий равна сумме вероятности произведения этих событий и вероятности суммы этих событий

Р(А)+Р(В)= Р(А*В) +Р(А+В)

Вероятность суммы

Вероятность суммы двух событий равна разности суммы вероятностей этих событий и произведения вероятностей этих событий

Р(А+В)=Р(А)+Р(В)-Р(А)*Р(В)


Задача 1

Решение

Условие

Вероятность каждого попадания равна 0,8.

Биатлонист 5 раз стреляет по мишеням. Вероятность попадания в мишень при одном выстреле равна 0,8. Найдите вероятность того, что биатлонист первые 3 раза попал в мишени, а последние 2 раза промахнулся. Результат округлите до сотых.

Вероятность каждого промаха равна 1-0,8= 0,2 .

По формуле умножения вероятностей получим

Р(А )=0,8*0,8*0,8*0,2*0,2

Р(А )= 0,02048 0,02

Ответ: 0,02


Задача 2

Условие

Решение

В Сказочной стране бывает два типа погоды: хорошая и отличная, причем погода, установившись утром, держится неизменной весь день. Известно, что с вероятностью 0,6 погода завтра будет такой же, как и сегодня. Сегодня 18 сентября, погода в Сказочной стране хорошая. Найдите вероятность того, что 21 сентября в Сказочной стране будет отличная погода.

Так как 18 сентября погода хорошая, то 19 сентября с вероятностью 0,6 погода хорошая, а с вероятностью 0,4 отличная.

Если 19 сентября погода хорошая, то 20 сентября вероятность хорошей погоды равна 0,6*0,6=0,36

Вероятность отличной погоды равна 0,6*0,4=0,24

Аналогично, если 19 сентября погода отличная, то с вероятностью 0,4*0,6=0,24 она будет отличной и 20 сентября. Хорошей 20 сентября погода будет с вероятностью 0,4*0,4=0,16.

Рассуждая аналогично, получаем, что вероятность отличной погоды 21 сентября будет равна вероятности суммы: 0,6*0,24+ +0,6*0,24+0,4*0,16+0,6*0,24= 0,496


Задача 3

Условие

Решение

Автоматическая линия изготавливает батарейки. Вероятность того, что готовая батарейка неисправна, равна 0,02. Перед упаковкой каждая батарейка проходит систему контроля. Вероятность того, что система заблокирует неисправную батарейку, равна 0,98. Вероятность того, что система по ошибке заблокирует исправную батарейку, равна 0,03. Найдите вероятность того, что случайно выбранная изготовленная батарейка будет заблокирована системой контроля.

Пусть событие А={батарейка будет заблокирована}, тогда вероятность наступления данного события можно найти как объединение пересечений событий.

Р(А)=0,02*0,98+0,98*0,03

Р(А)=0,98(0,02+0,03)

Р(А)=0,98*0,05= 0,049

Ответ: 0,049


Литература

  • Макарычев Ю.Н. Алгебра: элементы статистики и теории вероятностей: учеб. пособие для учащихся общеобразоват. Учреждений. Издательство «Просвещение», 2003
  • Мордкович А.Г., Семенов П.В. Алгебра и начала математического анализа. Часть 1.Учебник для общеобразовательных организаций. Издательство «Мнемозина», 2015
  • Лысенко Ф.Ф., Кулабухова С.Ю. Математика. Подготовка к ЕГЭ-2016. Издательство ООО «Легион», 2015
  • Высоцкий И.Р., Ященко И.В. ЕГЭ 2016. Математика. Теория вероятностей. Рабочая тетрадь. Издательство МЦНМО, 2016

«Задачи по комбинаторике» - Сколькими способами можно выбрать одну книгу. Сколькими способами можно сформировать экипаж корабля, состоящий из командира и инженера? Комбинаторика. Задача № 2. К. Правило сложения Правило умножения. Правило суммы. Решение: 30 + 40 = 70 (способами). Задача №1. Задача № 3. И. Пусть существует три кандидата на пост командира и 2 на пост инженера.

«Размещение элементов» - Комбинаторика. Размещение. Размещение и сочитание. Формулы: Для любых натуральных чисел n и k где n>k,справедливы равенства: Для числа выборов двух элементов из n данных: Сочетание. В комбинаторике сочетанием из n по k называется набор k элементов, выбранных из данных n элементов.

«Статистические характеристики» - Математическая статистика и т.д.. Статистические исследования. 5. Что такое статистика? 3. 9. Среднее арифметическое Размах Мода Медиана. Этапы исследовательской деятельности. 2. 14. « Есть три вида лжи: обычная ложь, наглая ложь и статистическая. ».

«Комбинации» - Имеются буквы А,В,С,Д. составить все комбинации только из двух букв. Самостоятельная работа состояла из 2 заданий. Задачу правильно решили 13 уч., а пример-17. не справились с работой 3 ученика. Комбинаторные задачи. Задача №1. Сколько учеников успешно решили самостоятельную работу. Работу писали 30 уч.

«Перестановки элементов» - Прямой алгоритм лексикографического перебора перестановок. Комбинаторика. Задача о наибольшей возрастающей подпоследовательности. Нумерация множества. Формальное описание алгоритма. Перестановки. Теорема о лексикографическом переборе перестановок. Перебор перестановок. Перебор перестановок элементарными транспозициями.

«Комбинаторика 9 класс» - Из 30 участников собрание надо выбрать председателя и секретаря. Решение: а) 3! = 1 · 2 · 3 =6 б) 5! = 1 · 2 · 3 · 4 · 5 = 120. II. Обозначение: P n Ф ормула для вычисления перестановок: P n = A6 10 =n ·(n -1) · (n-2) · … · 3 · 2 · 1=n! 2-я группа. Обозначение: Формула для вычисления сочетаний: *. Ответы и решения. 2-я группа.

Всего в теме 25 презентаций

Слайд 2

Сочетания

Определение 1 Сочетанием из n элементов по k называется всякая совокупность попарно различных k элементов, выбранных каким-либо способом из данных n элементов. Другими словами k-сочетание – это k-элементное подмножество n элементного множества. Пример. Дано множество. Составим 2- сочетания:

Слайд 3

Теорема 1 Число k- сочетаний n-элементного множества вычисляется по формуле Доказательство. Из каждого k-сочетания, переставляя его элементы всевозможными способами, получим k! размещений. Значит, Отсюда

Слайд 4

Пример

Сколькими способами можно выбрать 3 плитки шоколада из имеющихся 5 плиток? Решение. Задача сводится к вычислению числа сочетаний из 5 по 3

Слайд 5

Свойства сочетаний

1) Доказательство: 2) Доказательство:

Слайд 6

3) Доказательство: 4) Доказательство:

Слайд 7

Бином Ньютона

Доказательство. Доказательство поведем индукцией по n. Базис индукции. При n=1 бином Ньютона имеет вид Упростив выражение, получим верное равенство 2) Индуктивное предположение. Допустим при n=t выполняется равенство

Слайд 8

3)Индуктивный переход. Докажем, что при n=t+1 выполняется равенство Для этого домножим в равенстве индуктивного предположения левую и правую части на. Получим

Слайд 9

Раскроем скобки в правой части равенства Приведем подобные Используем свойства числа сочетаний

Слайд 10

Следствия из бинома Ньютона

получается из бинома Ньютона при получается из бинома Ньютона при 1)Равенство 2) Равенство

Слайд 11

Сочетания с повторениями

  • Слайд 12

    Сочетание с повторениями

    Определение 1 Сочетанием из n элементов по k называется всякая совокупность k элементов, выбранных каким-либо способом из данных n элементов. Пример:Дано множествоА= . Составим 2- сочетания с повторениями:

    Слайд 13

    Число сочетаний с повторениями

    Теорема1. Число k-сочетание с повторениями n – элементного множества вычисляется по формуле Доказательство. Лемма. Количество упорядоченных наборов из 0 и 1 длины n, состоящих из k единиц равно. Доказательство Леммы. Упорядоченный набор из 0 и 1 однозначно определяется выбором мест для единиц. Число различных вариантов выбора k мест для единиц вычисляется по формуле Лемма доказана.

    Слайд 14

    Строим k-сочетания с повторениями из элементов множества В каждом таком наборе сначала расположим элементы типа, затем типа,и так далее. Каждому k-сочетанию с повторениями поставим в соответствие последовательность из 0 и 1 длины n+k-1, число единиц в этой последовательности равно k, число нулей n-1. Каждый 0 отделяет наборы различных типов. Каждое k-сочетание с повторениями однозначно определяет указанную последовательность и наоборот. По лемме таких последовательностей существует. Значит,

    Слайд 15

    Пример

    В магазине продаются пирожные 4 сортов. Сколькими способами можно купить 7 пирожных? Решение. Используем формулу числа сочетаний с повторениями, так как покупка будет содержать пирожные повторяющихся сортов.

    Слайд 16

    Сводная таблица

    Слайд 17

    Решение задач

  • Слайд 18

    Задачи

    1) В почтовом отделении продают 5 видов интернет-карт. Сколькими способами можно купить в нем 3 различные карты? Сколькими способами можно купить 3 карты? Решение. Ответ на первый вопрос получим с помощью формулы числа сочетаний без повторений, так как карты различные На второй вопрос ответим, используя формулу числа сочетаний с повторениями, так как не сказано, что карты различных видов, значит виды карт могут повторяться

    Слайд 19

    2)В классе 8 мальчиков и 9 девочек. Сколькими способами можно выбрать группу детей, состоящей из 4 мальчиков и 3 девочек? Решение. Четырех мальчиков выберем из 8, троих девочек – из 9. По правилу умножения получим

    Слайд 20

    3)Используя бином Ньютона, раскрыть скобки. Решение.

    Слайд 21

    4)Сколькими способами можно раздать 6 одинаковых апельсинов между тремя детьми? Решение. Так как апельсины одинаковые, их вообще нельзя использовать в качестве 6 различных элементов множества. Рассмотрим множество, состоящее из троих детей. Будем выбирать детей для апельсинов. Используем формулу числа сочетаний с повторениями, так как одному ребенку может достаться несколько апельсинов, а может не достаться ни одного.

    Слайд 22

    5)Сколькими способами можно распределить 5 одинаковых принтеров, 3 телефонных аппарата, 7 мониторов между 4 фирмами? Решение. Распределим сначала принтеры, затем телефонные аппараты, и, наконец, мониторы. Используя правило умножения, получим

    Слайд 23

    6) Сколькими способами можно закодировать дверь, если она открывается при одновременном нажатии определенного количества различных цифр? Код может состоять из 1, или 2, или …,или 10 цифр. Для однозначного кода различных вариантов существует, для двузначного, …, для десятизначного. По правилу сложения получим Использовали следствие из бинома Ньютона.

    Слайд 24

    Вопросы: Сравнить выражения Си А Вычислить С k n n k 8 2

    Посмотреть все слайды

    1. Организационный момент
    Приветствие учеников, сообщение темы и цели урока
    2. Повторение и закрепление пройденного материала
    · Ответы на вопросы по домашнему заданию (разбор нерешенных задач).
    · Контроль усвоения материала (письменный опрос).
    Вариант 1
    1. Достоверное событие и его вероятность.
    2. а) В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 7 очков. Результат округлите до сотых.
    б) В чемпионате по гимнастике участвуют 40 спортсменок: 12 из Аргентины, 9 из Бразилии, остальные — из Парагвая. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Парагвая.
    в) В среднем из 500 садовых насосов, поступивших в продажу, 4 подтекают. Найдите вероятность того, что один случайно выбранный для контроля насос не подтекает.
    Вариант 2
    1. Невозможное событие и его вероятность.
    2. а) В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 9 очков. Результат округлите до сотых.
    б) В чемпионате по гимнастике участвуют 64 спортсменки: 20 из Японии, 28 из Китая, остальные — из Кореи. Порядок, в котором выступают гимнастки, определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Кореи.
    в) Фабрика выпускает сумки. В среднем на 170 качественных сумок приходится шесть сумок со скрытыми дефектами. Найдите вероятность того, что купленная сумка окажется качественной. Результат округлите до сотых.

    Ответ: вариант 1. 2. а) 0,17; б) 0,475; в) 0,992.
    вариант 2. 2. а) 0,11; б) 0,25; в) 0,97.
    3. Изучение нового материала
    Класс разделен на группы, которые занимались сбором информации, оформлением и представлением на уроке результатов своего труда (выступление учащихся с итогами своей работы).
    1 группа (найти информацию о том, какие факторы (причины) способствовали появлению науки комбинаторики, какие ученые стояли у самых истоков возникновения).
    2 группа (найти информацию о том, существует ли комбинаторика в реальной жизни, если да, то в каких отраслях применяется).

    3 группа ( найти информацию о том, какие задачи называются комбинаторными и как можно их решить, рассмотреть каждый метод решения и сделать подборку нескольких задач, решаемых конкретным методом).
    3.1. 1 группа.
    Представителям самых различных специальностей приходиться решать задачи, в которых рассматриваются те или иные комбинации, составленные из букв, цифр и иных объектов.
    При рассмотрении простейших вероятностных задач нам приходилось подсчитывать число различных исходов (комбинаций). Для небольшого числа элементов такие вычисления сделать несложно. В противном случае такая задача представляет значительную сложность. (слайд 1)

    Комбинаторикой называют область математики, которая изучает вопросы о числе различных комбинаций (удовлетворяющих тем или иным условиям), которые можно составить из данных элементов.
    Комбинаторика - раздел математики, в котором изучаются простейшие «соединения». Перестановки - соединения, которые можно составить из n предметов, меняя всеми возможными способами их порядок; число их Размещения - соединения, содержащие по m предметов из числа n данных, различающиеся либо порядком предметов, либо самими предметами; число их Сочетания - соединения, содержащие по m предметов из n, различающиеся друг от друга, по крайней мере, одним предметом (в современном толковом словаре изд. «Большая Советская Энциклопедия»).
    С задачами, в которых приходилось выбирать те или иные предметы, располагать их в определенном порядке и отыскивать среди разных расположений наилучшие, люди столкнулись еще в доисторическую эпоху, выбирая наилучшее положение охотников во время охоты, воинов - во время битвы, инструментов - во время работы. (слайд 2)

    · Термин "комбинаторика" был введён в математический обиход Лейбницем, который в 1666 году опубликовал свой труд "Рассуждения о комбинаторном искусстве". (слайд 3)
    · Первоначально комбинаторика возникла в XVI в в связи с распространением различных азартных игр. (слайд 4)

    3.1. 2 группа. (слайд 1)
    Замечательно, что наука, которая начала с рассмотрения азартных игр, обещает стать наиболее важным объектом человеческого знания. Ведь большей частью жизненные вопросы являются на самом деле задачами из теории вероятностей.
    П. Лаплас

    Области применения комбинаторики:
    . учебные заведения (составление расписаний) (слайд 2)
    . сфера общественного питания (составление меню)
    . лингвистика (рассмотрение вариантов комбинаций букв)
    . география (раскраска карт) (слайд 3)


    3.1. 3 группа
    Задачи, в которых идет речь о тех или иных комбинациях объектов, называются комбинаторными. (слайд 1)
    Правило сложения: если некоторый объект А можно выбрать m способами, а другой объект В можно выбрать n способами, то выбор « либо А, либо В» можно осуществить m + n способами.
    (слайд 2)
    Например:
    · На тарелке лежат 5 яблок и 4 апельсина. Сколькими способами можно выбрать один плод?
    По условию задачи яблоко можно выбрать пятью способами, апельсин - четырьмя. Так как в задаче речь идет о выборе «либо яблоко, либо апельсин», то его, согласно правилу сложения, можно осуществить 5+4=9 способами.
    · Давайте рассмотрим такую задачу: сколько двузначных чисел можно составить из цифр 1,4,7, используя в записи числа каждую из них не более одного раза? (слайд 3)
    · Решение: для того, чтобы не пропустить и не повторить ни одно из чисел, будем записывать их в порядке возрастания. Сначала запишем числа, начинающиеся с цифры 1, затем с цифры 4, и, наконец, с цифры 7:
    14, 17, 41, 47, 71, 74.
    Ответ: 6.
    Этот метод называется перебором вариантов. Таким образом, их трех данных цифр можно составить всего 6 различных двузначных чисел.
    Эту задачу можно решить и другим способом. Его название - дерево возможных вариантов. Для этой задачи построена специальная схема. (слайд 4) (слайд 5)
    Ставим звездочку. Она будет обозначать количество возможных вариантов.
    Далее отводим от звездочки 3 отрезка. В условии задачи даны 3 цифры - 1, 4, 7.
    Ставим эти цифры на концах отрезков. Они будут обозначать число десятков в данном числе.
    Далее от каждой цифры проводим по 2 отрезка.
    На концах этих отрезков записываем также цифры 1, 4, 7. Они будут обозначать число единиц.
    Рассмотрим, какие числа получились: 14, 17, 41, 47, 71, 74. То есть всего получилось 6 чисел.
    Ответ: 6.

    Эта схема действительно похожа на дерево, правда "вверх ногами" и без ствола.
    Правило умножения: если объект А можно выбрать m способами и если после каждого такого выбора объект В можно выбрать n способами, то выбор пары (А,В) в указанном порядке можно осуществить m ∙ n способами. (слайд 6)
    · Сколько двузначных чисел можно составить из цифр 1,4,7, используя в записи числа каждую из них не более одного раза?
    Эту задачу можно решить по-другому и намного быстрее, не строя дерева возможных вариантов. Рассуждать будем так. Первую цифру двузначного числа можно выбрать тремя способами. Так как после выбора первой цифры останутся две, то вторую цифру можно выбрать из оставшихся цифр уже двумя способами. Следовательно, общее число искомых трехзначных чисел равно произведению 3∙2, т.е. 6.
    · Сколько пятизначных чисел можно составить из цифр 5, 9, 0, 6?

    По правилу умножения получаем: 4∙4∙4∙4=256 чисел.
    (слайд 7)
    Перестановки - соединения, каждое из которых содержит n различных элементов, взятых в определенном порядке.(слайд 8)
    P n = n ! = 1 · 2 · 3 · … · (n -2) · (n -1) · n
    Задача. (слайд 9)
    Сколькими способами можно расставить на полке семь различных книг?
    Решение:
    Число таких способов равно числу перестановок из семи элементов,
    т.е. P 7 = 7! = 1 · 2 · 3 · … · 7 = 5040.
    Ответ: 5040.
    Задача. (слайд 10)
    Имеются 10 различных книг, три из которых - справочники. Сколькими способами
    Можно расставить эти книги на полке так, чтобы все справочники стояли рядом?
    Решение:
    Т.к. в справочники должны стоять рядом, то будем рассматривать их как одну книгу. Тогда на полке надо расставить 10 - 3+1=8 книг. Это можно сделать P 8 способами. Для каждой из полученных комбинаций можно сделать P 3 перестановок справочников.
    Поэтому число способов расположения книг на полке равно произведению:
    P 8 · P 3 = 8! · 3! = 40320 · 6 =241920.
    Ответ: 241920.

  • airsoft-unity.ru - Портал майнингов - Виды бизнеса. Инструкции. Компании. Маркетинг. Налоги