Устройство муфт на мостовых кранах учебное пособие. Проект электрооборудования мостового крана

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

КУРСОВОЙ ПРОЕКТ

по курсу «Теория электропривода»

« Проектирование электропривода механизма подъема мостового крана »

Введение

2. Требования к электроприводу, выбор стандартной схемы управления двигателем

3.1 Расчёт продолжительности включения

4. Проверка двигателя по скорости, выбор редуктора, приведение маховых моментов к оси двигателя

4.1 Выбор редуктора

5. Определение возможности неучета упругих связей

6.2 Расчет статических характеристик спуска

9.2 Выбор троллеев

10. Техника безопасности

Заключение

Библиографический список

Введение

электропривод кран редуктор

Важнейшими задачами в развитии металлургической промышленности является широкая механизация трудоёмких работ и автоматизация производственных процессов. В решении их значительная роль принадлежит подъемно-транспортному оборудованию и, в первую очередь, кранам, как основному средству внутрицехового транспорта.

Производительность основных цехов металлургических предприятий, например сталеплавильных, конверторных, прокатных, в значительной мере зависит от надёжности работы и производительности кранов. В то же время эффективность работы кранов существенно зависит от качественных показателей кранового электрооборудования.

Работа крана в условиях того или иного металлургического предприятия и цеха специфична и зависит от характера конкретного производственного процесса. Особые условия использования кранов металлургических цехов должны учитываться при проектировании и эксплуатации кранового электрооборудования.

На металлургических предприятиях работают мостовые краны общего назначения (крюковые, грейферные, магнитные, магнитно-грейферные) и металлургические (литейные, для раздевания слитков - стрипперные, колодцевые, посадочные и др.). Наиболее широко применяются крюковые мостовые краны общего назначения при технологических, погрузочно-разгрузочных, монтажных, ремонтных, складских и других видах работ. У этих кранов большая номенклатура типоразмеров и исполнений, их грузоподъёмность достигает 800 т., однако наиболее широко используются краны грузоподъёмностью о 5 до 320 т., имеющие от 3 до 5 двигателей.

Мостовой кран включает две основные части: мост и грузовую тележку. Кран перемещается над землёй (полом), он почти не занимает полезного объёма цеха или склада, обеспечивая в тоже время обслуживание практически любой точки помещения.

Конструктивный вид установленного крана в основном определяется спецификой цеха и его технологией. Однако многие узлы кранового оборудования, например механизма подъема и передвижения, выполняются однотипными для многих конструкций кранов. Поэтому в вопросах выбора и эксплуатации электрооборудования металлургических кранов различного назначения много общего.

1. Технические и технологические характеристики механизма

На металлургических предприятиях работают мостовые краны общего назначения (крюковые, грейферные, магнитные, магнитно-грейферные) и металлургические (литейные, для раздевания слитков, колодцевые, посадочные и др.). Конструкция кранов в основном определяется их назначением и спецификой технологического процесса.

Электрооборудование кранов металлургических цехов работает, как правило, в тяжелых условиях: повышенная запыленность и загазованность, повышенная температура или резкие колебания температуры окружающей среды, высокая влажность, влияние химических реагентов.

К электрооборудованию кранов предъявляют следующие общие требования: обеспечение высокой производительности, надежность работы, безопасность обслуживания, простота эксплуатации и ремонта и др.

Режимы работы крановых механизмов разнообразны и в основном определяются особенностью технологических процессов. При этом в ряде случаев даже однотипные краны работают в разных режимах. Неверный выбор режима при проектировании электропривода кранов ухудшает технико-экономические показатели всей установки. Так, например, выбор более тяжелого режима работы по сравнению с реальным приводит к завышению габаритов, массы и стоимости кранового электрооборудования. Выбор же более легкого режима обуславливает повышенный износ электрооборудования, частые поломки и простои. По условию, указанному в задании, механизм подъёма работает в закрытых помещениях (внутри цеха) в одну - две смены.

В цехах металлургических предприятий применяются крановые электродвигатели трёхфазного переменного тока (асинхронные) и постоянного тока (последовательного или параллельного возбуждения). Они работают, как правило, в повторно-кратковременном режиме при широком регулировании частоты вращения, причём работа их сопровождается значительными перегрузками, частыми пусками, реверсами и торможениями. Кроме того, электродвигатели крановых механизмов работают в условиях повышенной тряски и вибраций. В ряде металлургических цехов они, помимо всего этого, подвергаются воздействию высокой температуры (до 60-70 С), паров и газов.

Основные особенности крановых электродвигателей:

· исполнение обычно закрытое, изоляционные материалы имеют класс нагревостойкости F и H;

· момент инерции ротора по возможности минимальный, а номинальные частоты вращения относительно небольшие - для снижения потерь энергии при переходных процессах;

· магнитный поток относительно велик - для обеспечения большой перегрузочной способности по моменту;

· значение кратковременной перегрузки поп моменту для крановых электродвигателей переменного тока составляет 2,3 - 3,5;

· для крановых электродвигателей переменного тока за номинальный принят режим с ПВ = 40%, а для электродвигателей постоянного тока наряду с этим режимом - режим 60 минут (часовой);

· отношение максимально допустимой рабочей частоты вращения к номинальной составляет для электродвигателей постоянного тока 3,5- 4,9 , для электродвигателей переменного тока -2,5.

2. Требования к электроприводу, выбор стандартной схемы управления двигателем.

Основными критериями оценки при выборе той или иной схемы электропривода крановых механизмов являются: надежность и устойчивость работы, стоимость электрооборудования, эксплуатационные расходы, масса и габариты элементов системы, удобство её управления.

Основные механизмы таких установок, как правило, имеют реверсивный электропривод, рассчитанный для работы в интенсивном повторно-кратковременном режиме. В каждом рабочем цикле имеют место неустановившиеся режимы работы электропривода: пуски, реверсы, торможения, оказывающие существенное влияние на производительность механизма, на динамические нагрузки привода и механизму, на КПД установки и на ряд других факторов. Все эти условия предъявляют к электроприводу сложные требования, в значительной степени общие для всей группу крановых механизмов.

Дополнительными критериями оценки, свойственными крановым механизмам, являются диапазон регулирования, плавность регулирования, жесткость характеристик, допустимая нагрузка, удобство и простота обслуживания.

С точки зрения специфичности работы различаются системы управления механизмами подъёма, передвижения и поворота.

Системы управления электроприводами механизмов подъема должна обеспечивать широкий диапазон регулирования скорости. При этом спуск и подъем пустого грузозахватного устройства целесообразно осуществлять с максимальной скоростью для повышения производительности крана.

Кинематическая схема механизма подъема мостового крана приведена на рисунке 1. Буквенные обозначения: Д - электродвигатель; Т -механический тормоз; Р - редуктор; М - муфта; Б - барабан; К - канат; ГЗУ - грузозахватное устройство; Г - груз.

Рисунок 1. Кинематическая схема механизма подъема мостового крана

Для электродвигателей постоянного тока последовательного возбуждения применяются силовые кулачковые контроллеры серии КВ1-02 и магнитные контроллеры серий ПС и ДПС

В соответствии с заданием необходимо выбрать схему управления с магнитными контроллерами. Наиболее подходящим вариантом для управления электроприводом будет схема с магнитным контроллером типа ПС с командоконтроллером на 4 позиции . Схема данной системы управления приведена на рисунке 2.

Рисунок 2. Схема магнитного контроллера серии ПС

Подъем порожнего крюка осуществляется с большой скоростью, спуск - с малой. Пуск двигателя производится в функции времени. Схема предусматривает реверсирование и электрическое торможение электродвигателя. При первом положении подъема рукоятки командоконтроллера происходит выбирание слабины канатов и подъем легких грузов на малой скорости. При переводе рукоятки в последующие положения подъема осуществляется последующий пуск электродвигателя или регулирование его скорости. Контроль ускорения в схеме осуществляется с помощью реле времени КТ2 и КТ4. При переводе рукоятки в нулевое положение двигатель отключается от сети и происходит его динамическое торможение.

При неисправности механического тормоза схема предусматривает опускание груза на пониженной скорости с применением электрического торможения двигателя. При переводе рукоятки командоконтроллера из нулевого положения в первое и последующие положения спуска сопротивление постепенно выводится из цепи якоря и одновременно вводится в цепь последовательной обмотки возбуждения. Уменьшение сопротивления цепи якоря уменьшает наклон механических характеристик, а увеличение сопротивления обмотки возбуждения приводит к уменьшению потока возбуждения и увеличению скорости спуска.

Схема магнитного контроллера серии ПС имеет три защиты:

1. Максимальная токовая защита мгновенного действия, осуществляемая реле КА1 и КА2;

2. Нулевая защита, осуществляемая реле KV, предупреждает самозапуск двигателя при восстановлении внезапно исчезнувшего напряжения, если рукоятка командоконтроллера не находилась в нулевом положении;

3. Конечная защита кранового механизма, осуществляющаяся с помощью конечных выключателей SQ1 и SQ2.

3. Расчёт и построение нагрузочных диаграмм, определение ПВ% и предварительный выбор мощности электродвигателя

3. 1 Расчёт продолжительности включения

Построим циклограмму работы кранового механизма в пространстве:

Рисунок 3. Циклограмма работы кранового механизма

Для определения ПВ% необходимо рассчитать время включения и время ожидания. Общий цикл работы состоит из нескольких частей: спуск крюка, строповка, подъем крюка с грузом, движение тележки и самого моста крана, спуск крюка с грузом, снятие груза с крюка, подъём крюка.

Время для захвата или снятия груза с крюка:

с (принимаем с);

Время подъёма или спуска:

Скорость подъёма (22м/мин=0.37 м/с).

Время движения моста:

где L - длина перемещения моста, равная длине цеха (60 м),

Скорость перемещения моста (22 м/мин = 0,37 м/с).

Время движения тележки:

где W - расстояние передвижения тележки, равное ширине цеха (20 м),

Скорость перемещения тележки (24 м/мин = 0,4 м/с).

Время работы определится:

Длительность цикла:

Определим ПВ%:

Ближайшее стандартное значение ПВ: 25%, что соответствует режиму работы двигателя S3 (повторно-кратковременный).

3.2 Статические нагрузки электродвигателя механизма подъема и предварительный выбор двигателя

а) Подъем груза

Рассчитываем статическую мощность, приведённую к валу двигателя :

где G - сила тяжести полезного груза, Н;

Сила тяжести грузозахватного устройства, Н;

v - скорость подъема, м/с;

КПД подъемного механизма, учитывающий потери на трение в редукторе, барабане, подшипниках, блоках и т.д., определяется по в соответствии со значением

Произведем расчет. Значения массы грузозахватывающего устройства и грузоподъемности крана m возьмем из технологического задания:

Для механизма подъема

В соответствии с .

Таким образом,

б) Подъем пустого грузозахватного устройства

Мощность, необходимая для подъема пустого грузозахватного устройства :

где - КПД ЭП при подъеме пустого грузозахватного устройства, в соответствии с

в) Спуск груза

Момент сил трения при спуске груза определим по формуле :

где - диаметр барабана (см. технологическое задание), i - полное передаточное число промежуточных передач от вала ЭД до грузозахватного устройства.

Статический момент при силовом спуске груза :

Т.к. <0, то спуск не силовой, а тормозной. При тормозном спуске мощность определяется по формуле (КПД кранового механизма при спуске принимают приближенно равным КПД при подъеме, скорость спуска равна скорости подъема):

г) Спуск пустого грузозахватного устройства

Для определения статического момента при спуске пустого грузозахватного устройства воспользуемся формулами и , в которых примем G=0.

КПД спуска равен КПД подъема пустого груза:

Т.к. расчет предварительный и i нам не неизвестно, рассчитаем символически:

Так как >0, то спуск силовой.

Для расчета нам потребуется значение мощности: :

Мощность при силовом спуске грузозахватного устройства:

Мощности, приведенные к стандартному значению ПВ:

Расчетная эквивалентная мощность:

где - время подъема.

Номинальная мощность двигателя должна удовлетворять условию:

РН 1,15РЭКВ = 1,1535,3 = 40,595 кВт

Исходя из условий мощности предварительно выбираем двигатель Д810 с последовательным возбуждением :

номинальная мощность РН (при ПВ% = 25%) …..…………….....49 кВт;

номинальное напряжение UН ……………………………………....220 В;

номинальный ток якоря IН ………………………….……………...255 А;

номинальная частота вращения nН ………………………....520 об/мин;

максимальный вращающий момент……………………………4210 Нм;

момент инерции якоря JЯ ………………………………………..3,6 кгм2;

сопротивление обмотки якоря при 20 0С …………………….0,0232 Ом;

сопротивление обмотки возбуждения при 20 0С …………...0,0160 Ом;

сопротивление обмотки добавочных полюсов при 20 0С…...0,0122 Ом.

Универсальные характеристики двигателя Д-810 приведены на рисунке 5.

Рисунок 4. Универсальные характеристики двигателя типа Д810 с последовательным возбуждением.

На основании универсальных характеристик построим ЭМХ и МХ двигателя.

кВт; об/мин; А.

Характеристики двигателя типа Д810 с последовательным возбуждением.

Составим таблицу:

Рисунок 5. Естественная ЭМХ двигателя Д-810

Рисунок 6. Естественная МХ двигателя Д-810

По полученным значениям мощностей и величинам времени рабочих операций строим нагрузочную диаграмму мощности:

Рисунок 7. Нагрузочная диаграмма электродвигателя

4. Проверка двигателя по скорости, выбор редуктора, приведение маховых моментов к оси двигателя.

4.1 Выбор редуктора

Определим требуемое передаточное число редуктора:

Так как относительно к редукторам режим ПВ=25% считается легким, то мощность редуктора должна удовлетворять условию . Из выберем редуктор типа Ц2-650.

Параметры редуктора Ц2-650:

скорость вращения быстроходного вала……………………..600 об/мин

передаточное число редуктора………………………………………19.88

мощность при тяжелом режиме работы………………………..103,5 кВт

При данном значении передаточного числа редуктора применение полиспаста не требуется.

4.2 Расчет статических моментов

а) Статический момент при подъеме номинального груза :

б) Статический момент при подъеме пустого грузозахватного устройства :

в) Статический момент при тормозном спуске номинального груза :

г) Статический момент при силовом спуске грузозахватного устройства. Используем формулу , принимая G = 0:

д) Номинальный момент электродвигателя:

Статические моменты в долях:

4.3 Проверка двигателя по скорости

Согласно естественной МХ двигателя Д810 (рисунок 5) значению соответствует значение скорости 490 об/мин. Скорость подъема будет составлять

Разница между фактической и требуемой скоростью подъема составляет 1,5%<10%, следовательно, двигатель по скорости проходит.

4.4 Приведение моментов инерции, моментов сопротивления и жесткости каната к валу двигателя

Общий момент инерции механизма и груза, приведенный к валу двигателя:

,

где - момент инерции якоря двигателя (см. технические данные двигателя Д-810 выше);

момент инерции поступательно движущихся груза и грузозахватного устройства;

- момент инерции тормозного шкива и муфты. Обычно меньше остальных слагаемых на порядок, поэтому он не рассчитывается, а учитывается в коэффициенте, равном 1.25.

Момент инерции поступательно движущейся массы грузозахватного устройства:

Общий момент инерции грузозахватного устройства с грузом:

Момент инерции грузозахватного устройства:

Найдем радиус приведения поступательно движущихся масс:

Найдем приведенное значение момента сопротивления:

Приведенный момент потерь:

Приведенная жесткость каната между грузом и барабаном:

где - жесткость одного метра подъемного каната; - радиус приведения; - высота подъема груза. Отсюда:

5. Определение возможности не учета упругих связей

Составим расчетную схему механической части ЭП с учетом того, что имеется только одна упругая связь с конечной жесткостью (связь, представленная канатом между барабаном и грузозахватным устройством):

Размещено на http://www.allbest.ru/

Рисунок 8. Расчетная схема механической части ЭП

В данной схеме

,

где - момент инерции якоря ЭД,

- момент инерции муфты,

- суммарный момент инерции колес редуктора,

- приведенный момент инерции барабана.

Примем

Для данной расчетной схемы на основании основного уравнения движения электропривода можно записать:

На основании данной системы составим структурную схему:

Рисунок 9. Структурная схема упругой двухмассовой системы

Исследуем данную схему как объект управления. Для этого примем возмущающие воздействия и равными 0 и преобразуем схему следующим образом:

Рисунок 10. Преобразованная структурная схема упругой двухмассовой системы

В соответствии с правилами преобразования структурных схем перенесем воздействие с входа звена на его выход:

Рисунок 11. Окончательная структурная схема упругой двухмассовой системы

Передаточная функция цепи ООС:

С учетом ПФ цепи ООС определим следующие передаточные функции:

ПФ по:

Введем следующие обозначения:

соотношение моментов инерции маховых масс;

резонансная частота двухмассовой упругой системы;

резонансная частота второй маховой массы при (такое допущение оправдано, т.к. , т.е.).

С учетом введенных в рассмотрение величин ПФ по примет вид:

Для анализа свойств системы построим совместно ее асимптотическую ЛАХ и ЛФХ:

Частоты сопряжения на асимптотической ЛАХ равны резонансным частотам для первой и второй маховых масс.

Найдем соотношение частот сопряжения:

Видно, что частоты сопряжения отличаются гораздо меньше, чем на 2 октавы, следовательно, асимтотические ЛАХ можно складывать алгебраически.

Рисунок 12. Асимптотическая ЛАХ и ЛФХ системы

С учетом, т.е с учетом, упругой связью можно пренебречь. При синтезе ЭП механическая часть ЭП может быть представлена абсолютно жестким звеном, а движение ЭП определяется 1й маховой массой.

Рисунок 13. Структурная схема механической части ЭП с абсолютно жесткими связями

В этой схеме:

;

ЛАХ и ЛФХ для такой системы выглядят следующим образом:

Рисунок 14. Асимптотическая ЛАХ и ЛФХ системы с абсолютно жесткими связями

6. Расчет сопротивлений и механических характеристик

Рисунок 15. Развертка схемы магнитного контроллера серии ПС для различных положений рукоятки командоконтроллера

На рисунке 16 показаны механические характеристики электропривода с магнитным контроллером серии ПС . Каждая характеристика соответствует одному положению рукоятки командоконтроллера. Развертки схемы контроллера ПС для различных положений рукояти командоконтроллера показаны на рисунке 15 .

Рисунок 16. Механические характеристики электродвигателя при управлении магнитным контроллером серии ПС.

6.1 Расчет статических характеристик подъема

При положении рукояти командоконтроллера в позиции 1 осуществляется торможение двигателя противовключением с использованием шунтирования якоря.

Для построения пусковой диаграммы необходимо задаться токами переключения. Примем токи переключения: , . При таких значениях токов переключения сопротивления резисторов в схеме контроллера будут отличаться от рассчитанных выше.

Построим пусковую диаграмму. Для этого осуществим предварительные расчеты:

Максимальный ток переключения:

Полное сопротивление пускового реостата:

Ом

Значение скорости при полностью введенном пусковом реостате и минимальном токе переключения:

Осуществим построение пусковой диаграммы:

Рисунок 16. Пусковая диаграмма двигателя при груженом пуске

Из диаграммы видно, что пуск осуществляется в три ступени.

Соответственно, пусковой реостат будет иметь три секции с сопротивлениями:

Ом

Ом

Ом

Поскольку схема командоконтроллера предусматривает три пусковых реостата (см. рис.14) 1У, 2У, 3У, примем, что соответствует 1У, соответствует 2У, соответствует 3У,

6.2 Расчет статических характеристик спуска.

В соответствии с развертками силовых цепей двигателя при различных схемах управления все схемы спуска осуществляются в схемах с шунтированием якоря обмоткой возбуждения. Методика расчета искусственных характеристик для подобных схем приведена в .

Рассчитаем характеристики, соответствующие схемам спуска 1 - 4. Для организации схем будем использовать реостаты, сопротивления которых рассчитаны при расчете пусковой диаграммы (это делается в целях рационализации схемы управления двигателем).

Осуществим построение искусственных электромеханических характеристик для режима спуска.

Характеристика 1, обеспечивающая низкую скорость спуска при статическом моменте, близком к номинальному:

Характеристика 1

Характеристика 2:

Характеристика 3:

Характеристика 4, обеспечивающая силовой спуск грузозахватного устройства со скоростью, близкой к номинальной:

Характеристика 4

Спуск пустого грузозахватного устройства будем осуществлять по характеристике 4, которая обеспечивает силовой спуск в широком диапазоне скоростей. Спуск номинального груза будем осуществлять по характеристикам 1 - 3. Характеристика обеспечивает низкую посадочную скорость - 50 об/мин, т.е. менее 10 % от номинальной скорости.

Рисунок 18. Электромеханические характеристики спуска

Рисунок 19. Механические характеристики спуска

7. Построение переходных процессов, определение времени пуска и торможения, времени движения с установившейся скоростью

Расчет и построение переходных характеристик для тока якоря, скорости и момента при пуске осуществим методом численного интегрирования пусковой диаграммы (методом Эйлера), суть которого заключается в решении следующего уравнения:

Для этого ось скоростей разбиваем от начальной до конечной скорости на ряд интервалов (приращений) i. При сложении скорости на предыдущем интервале i-1 и приращение i, получаем текущее значение скорости i. По механической характеристике на каждом интервале определяем средние значения моментов двигателя Mi. Для каждого интервала скорости рассчитываем интервал времени ti. Текущее время:

Решив систему уравнений итерационным способом, находим все необходимые величины:

Поскольку наша пусковая диаграмма является электромеханической, т.е. построена в осях и I, то для осуществления построения по методу Эйлера необходимо перейти от значений токов к значениям моментов. Такой переход осуществим с помощью универсальных характеристик двигателя Д810 (рисунок 4).

Построение будем осуществлять как для груженого пуска (с номинальным грузом), так и для пуска без груза (нагрузкой является грузозахватное устройство). Статические моменты для этих случаев были рассчитаны выше.

7.1 Построение переходных процессов при пуске

Рисунок 20. Переходный процесс для скорости при груженом пуске

Время пуска составляет 1,68 с.

2) Построение переходного процесса для скорости, тока и момента при холостом пуске.

Рисунок 21. Переходный процесс для момента при холостом пуске

Рисунок 22. Переходный процесс для тока якоря при холостом пуске

Рисунок 23. Переходный процесс для скорости при холостом пуске

Время пуска составляет 0,222 с.

7.2 Построение переходных процессов при спуске

Рисунок 24. Переходный процесс для момента при спуске номинального груза

Рисунок 25. Переходный процесс для тока якоря при спуске номинального груза

Рисунок 26. Переходный процесс для скорости при спуске номинального груза

Время переходного процесса составляет 3,5 с.

Рисунок 27. Переходный процесс для момента при спуске пустого грузозахватного устройства

Рисунок 28. Переходный процесс для тока якоря при спуске пустого грузозахватного устройства

Рисунок 29. Переходный процесс для скорости при спуске пустого грузозахватного устройства

Время переходного процесса составляет 0,43 с.

8. Проверка правильности выбора электродвигателя

Для проверки двигателя по нагреву применяем метод эквивалентного тока.

Рассчитаем эквивалентные токи на каждом интервале времени (значения интервалов времени берутся из графиков переходных процессов для тока якоря). Участки между моментами переключения аппроксимируются трапециями, и используется соответствующая формула.

1) С грузом: А) Пуск

(время действия t=0.69 c);

(время действия t=0.1c);

(время действия t=0.03c);

(время действия t=0.863 c);

Б) Подъем:

t=32,43-(1,682+3,5)=27,25 с (время действия номинального тока определится как разность между временем подъема и временем переходных процессов пуска и торможения);

(время действия t=0,03c);

(время действия t=0,178 c);

(время действия t=2,95c);

(время действия t=3,5 c);

время действия 35,48 с

2) Без груза:

(время действия t=0.13c);

(время действия t=0.2c);

Б) Подъем пустого грузозахватного устройства:

(время действия t=32,43);

В) Переходные процессы при спуске:

(время действия t=0,43c);

Г) Спуск пустого грузозахватного устройства

время действия t=32,43

Находим общий эквивалентный ток:

Находим итоговый эквивалентный ток за время всего цикла:

Получаем: двигатель по нагреву проходит. Следовательно, двигатель Д810 для данного привода выбран правильно.

9. Выбор троллеев и резисторов

9.1 Выбор пускорегулирующих резисторов

В качестве пускорегулирующих резисторов по выберем ящики с ленточными фехралевыми резисторами типа НФ-1А, рассчитанных на длительный ток 400 А. Поскольку подобные ящики имеют несколько ступеней с различными сопротивлениями, то их комбинацией могут быть достигнуты требуемые значения сопротивлений.

9.2 Выбор троллеев

Для крановых электродвигателей возможно применение токоподвода различных типов. В качестве токоподвода для нашего двигателя выберем жесткий троллейный как наиболее надежный и дешевый, а также обеспечивающий малый износ при ПВ порядка 40 %.

Токоподвод будет выполнен в виде системы вспомогательных троллеев, расположенных вдоль моста. В качестве основного конструкционного элемента троллеев выберем стальные уголки размером 50х50х5 мм .

В качестве токоприемника выберем токоприемник типа ТКН-9А-1У1, рассчитанных на номинальный ток 400 А .

10. Техника безопасности

При обслуживании и ремонте кранового электрооборудования следует строго руководствоваться Правилами технической эксплуатации электроустановок потребителей, Межотраслевыми правилами по охране труда при эксплуатации электроустановок, Правилами устройства электроустановок, Правилами устройства и безопасной эксплуатации грузоподъёмных машин и местными инструкциями в условиях конкретного цеха

Если работа на электродвигателе связана с прикосновением к токоведущим и вращающимся частям, электродвигатель должен быть отключен с выполнением технических мероприятий, предотвращающих его ошибочное включение. Не допускается снятие ограждения вращающихся частей двигателя.

При выполнении любых работ на электродвигателе напряжение должно быть снято со всего электрооборудования крана, допускается установка заземления на время производства работ. На коммутационных аппаратах, осуществляющих подачу напряжения на электрооборудование крана, должно быть вывешено предупреждение “Не включать, работают люди”.

Напряжение на шинах распределительных устройств должно поддерживаться в пределах 100-105%. Не рекомендуется использовать электродвигатель при питающем напряжении ниже 90% и выше 110% от номинального.

На электродвигателе должен контролироваться ток якоря, что обеспечивается соответствующим включением амперметров.

На щитках и групповых сборках кранового электрооборудования должны быть предусмотрены вольтметры или сигнальные лампы.

Повторное включение электродвигателя в случае отключения его основными защитами разрешается после обследования и проведения контрольных измерений сопротивления изоляции.

Повторное включение электродвигателя в случае действия резервных защит до выяснения причины отключения не допускается.

Электродвигатель должны быть немедленно отключен от сети в следующих случаях:

При несчастных случаях с людьми;

Появлении дыма или огня из корпуса электродвигателя, а также из его пускорегулирующей аппаратуры и устройства возбуждения;

Поломке приводного механизма;

Резком увеличении вибрации подшипников агрегата;

Перегреве подшипников.

Порядок включения электродвигателя для опробования после ремонта или ТО должен быть следующим:

Производитель работ удаляет бригаду с места работы, оформляет окончание работы и сдает наряд оперативному персоналу;

Оперативный персонал снимает установленные заземления, плакаты, выполняет сборку схемы.

После опробования при необходимости продолжения работы на электродвигателе оперативный персонал вновь подготавливает рабочее место и бригада по наряду повторно допускается к работе на электродвигателе.

Безопасность обслуживания и работы крана в значительной мере зависит от умения крановщика правильно работать с контроллерами и командоконтроллерами.

Все работы по ремонту контроллеров следует вести при полностью снятом напряжении, отключив рубильник главной цепи.

При осмотре и проверке цепей управления кранового электрооборудования следует обратить особое внимание на состояние блокировочных контактов люка и боковых дверей выхода на мост, так как при выходе на мост с помощью этих контактов выполняется ответственная операция - снимается напряжение всех токоведущих частей, находящихся на мосту.

При ремонте главных троллеев крана работа производится следующим образом:

Если на кране кабина машиниста расположена со стороны главных троллеев, то ремонт их производят с переносных лесов.

Если же кабина расположена в середине моста или в стороне противоположной главным троллеям, то ремонт производят с лесов, находящихся на самом мосту.

На время ремонта главных троллеев рубильник распределительного пункта, от которого питается кран, должен быть отключен и на приводе его должен быть вывешен плакат «Не включать, на троллеях работают люди». Главные троллеи должны быть обязательно закорочены и заземлены.

Заключение

Согласно технологическому заданию, был спроектирован электропривод механизма подъема мостового крана, отвечающий всем требованиям задания. Отклонение скорости подъема от заданной составляет менее 10%, электродвигатель проходит по нагреву, что обеспечивает его долговременную работу. Троллеи выбраны из расчета наибольшей надежности и долговечности службы.

Выбранная схема управления двигателем предусматривает реверсирование и электрическое торможение электродвигателя

Схема магнитного контроллера серии ПС имеет три защиты: максимальную токовую защиту мгновенного действия; нулевую защиту, предупреждающую самозапуск двигателя при восстановлении внезапно исчезнувшего напряжения; конечную защиту кранового механизма.

К достоинствам этой схемы можно отнести то, что для управления контроллером требуются малые усилия со стороны оператора; для управления контроллером в кабине оператора размещаются, как правило, только малогабаритные командоконтроллеры - это позволяет уменьшить размеры кабины и максимально увеличить обзор рабочего пространства.

Таким образом, спроектированный электропривод отвечает всем технологическим требованиям, имеет высокую надежность и долговечность службы, обеспечена максимально возможная простота управления механизмом для оператора.

Библиографический список

1. “Электрооборудование кранов металлургических предприятий” [Текст] /Б. М. Рапутов - М.: “Металлургия”, 1990 - 272 с.

2. “Электрооборудование металлургических кранов” [Текст]/ Б. М. Рапутов - М.: “Металлургия”, 1977 - 248 c.

3. “Краново-металлургические и экскаваторные двигатели постоянного тока. Справочник” [Текст]/Ю. В. Алексеев, А. А. Рабинович - М.: Энергоатомиздат, 1985 - 168 с.

4. “Характеристики двигателей в электроприводе” [Текст] / С. П. Вешеневский - М.: “Энергия”, 1966 - 400 с.

5. “Основы автоматизированного электропривода” [Текст] / М. Г. Чиликин, М. М. Соколов, В. М. Терехов, А. В. Шинянский - М.: “Энергия”, 1974 - 568 с.

6. “Теория электропривода” [Текст] / В. И. Ключев - М.: Энергоатомиздат, 1985 - 560 с.

7. “Основы электропривода” [Текст] / В. П. Андреев, Ю. А. Сабинин - М.: Государственное энергетическое издательство, 1963 - 772 с.

8. “Сборник задач по теории электропривода” [Текст] / В. П. Есаков, В. И. Торопов - М.: ВШ, 1969 - 264 с.

9. “Редукторы. Справочник” [Текст]/ Ю. В. Краузе - М.: Машиностроение, 1974 - 231 с.

10. Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок [Текст]. - Новосибирск: Сибирское университетское издательство, 2009 - 144 с.

11. Правила технической эксплуатации электроустановок потребителей - Новосибирск: Сибирское университетское издательство, 2008 - 252 с.

12. Правила устройства и безопасности эксплуатации грузоподъемных кранов. - М.: Росгортехиздат, 1974. - 192 с.

Размещено на Allbest.ru

Подобные документы

    Выбор редуктора, троллеев и резисторов электродвигателя. Его проверка по скорости. Определение возможности неучета упругих связей, времени пуска, торможения и движения. Расчет сопротивлений и механических характеристик. Построение переходных процессов.

    курсовая работа , добавлен 24.09.2013

    Выбор двигателя и редуктора, расчет схем включения двигателя, расчет и построение его естественной и искусственных механических характеристик при пуске и торможении. Анализ способа расчета переходных режимов при пуске и торможении электропривода.

    курсовая работа , добавлен 12.04.2013

    Разработка электропривода механизма подъема мостового подъемного крана с заданными параметрами скорости подъема, а также его система управления. Выбор двигателя постоянного тока и расчет его параметров. Широтно-импульсный преобразователь: расчет системы.

    курсовая работа , добавлен 23.09.2008

    Расчет моментов статического сопротивления, выбор редуктора, двигателя, преобразователя частоты. Требования, предъявляемые к электроприводу. Расчет приведенных статических моментов и коэффициента жесткости. Проверка двигателя по производительности.

    курсовая работа , добавлен 28.11.2012

    Предварительный расчет мощности электродвигателя, определение передаточного числа редуктора. Построение тахограммы и нагрузочных диаграмм, проверка двигателя по перегрузочной способности и мощности. Расчет и построение механических характеристик привода.

    курсовая работа , добавлен 24.09.2010

    Выбор схемы подвеса груза, крюковой подвески, каната. Определение размеров барабана. Проверка двигателя на перегрузку. Проектирование и расчет механизма передвижения. Выбор двигателя и редуктора. Проверка на буксование. Расчет болтового соединения.

    курсовая работа , добавлен 30.03.2015

    Расчет механизма подъема тележки мостового электрического крана. Выбор кинематической схемы механизма, крюковой подвески, каната. Установка верхних блоков, барабана и уравнительного балансира. Выбор двигателя, редуктора, тормоза, соединительной муфты.

    курсовая работа , добавлен 17.10.2013

    Общие сведения о литейных кранах мостового типа. Проект механизма подъема груза; выбор кинематической схемы, крановой подвески, каната. Расчет двигателя, передачи, муфты, тормоза. Проверка двигателя механизма передвижения тележки на разгон и торможение.

    курсовая работа , добавлен 26.06.2014

    Предварительный выбор мощности и типа электродвигателя. Расчет и построение статических естественных механических характеристик электродвигатели для различных режимов его работы. Выбор электрической схемы электропривода и ее элементов, проверка двигателя.

    курсовая работа , добавлен 17.10.2011

    Расчет механизма подъема: выбор полипаста и расчет каната. Определение размеров блоков и барабана. Подбор болтов крепления прижимной планки. Подбор подшипников, двигателя, редуктора, тормоза, муфты для соединения вала двигателя с валом редуктора.

Введение

Кранами называются грузоподъемные устройства, служащие для вертикального и горизонтального перемещения грузов на большие расстояния. По особенностям конструкций, связанным с назначением и условиями работы, краны разделяются на мостовые, портальные, козловые, башенные и др. В цехах предприятий электромашиностроения наибольшее распространение получили мостовые краны, с помощью которых производится подъем и опускание тяжелых заготовок, деталей и узлов машин, а также их перемещение вдоль и поперек цеха. Вид мостового крана в основном определяется спецификой цеха и его технологией, однако многие узлы кранового оборудования, например механизмы подъема и передвижения, выполняются однотипными для различных разновидностей кранов.

На электрических кранах устанавливают электродвигатели, пусковые и регулировочные сопротивления, тормозные электромагниты, контроллеры, защитную, пускорегулирующую, сигнальную, блокировочную и осветительную аппаратуру, конечные выключатели, токосъемники. Питание на кран подается или через троллейные проводники, неподвижно закрепленные на строительных конструкциях, и токосъемники, закрепленные на кране, или при помощи гибкого шлангового кабеля. Электродвигатели, аппараты и электропроводку кранов монтируют в исполнении, соответствующем условиям окружающей среды.

В зависимости от вида транспортируемых грузов на мостовых кранах используют различные грузозахватывающие устройства: крюки, магниты, грейферы, клещи и т.п. В связи с этим различают краны крюковые, магнитные, грейферные, клещевые и т.п. Наибольшее распространение получили краны с крюковой подвеской или с подъемным электромагнитом, служащим для транспортировки стальных листов, стружки и других ферромагнитных материалов.

У всех типов кранов основными механизмами для перемещения грузов являются подъемные лебедки и механизмы передвижения.

По грузоподъемности мостовые краны условно разделяют на малые (масса груза 5-10 т.), средние (10-25 т.) и крупные (свыше 50 т.).

Перемещение грузов, связанное с грузоподъемными операциями, во всех отраслях народного хозяйства, на транспорте и в строительстве осуществляется разнообразными грузоподъемными машинами.

Грузоподъемные машины служат для погрузочно-разгрузочных работ, перемещения грузов в технологической цепи производства или строительства и выполнения ремонтно-монтажных работ с крупногабаритными агрегатами. Грузоподъемные машины с электрическими приводами имеют чрезвычайно широкий диапазон использования, что характеризуется интервалом мощностей приводов от сотен ватт до 1000кВт. В перспективе мощности крановых механизмов может дойти до 1500 –2500 кВт.

Мостовые краны в зависимости от назначения и характера выполняемой работы снабжают различными грузозахватными приспособлениями: крюками, грейферами, специальными захватами и т.п. Мостовой кран весьма удобен для использования, так как благодаря перемещению по крановым путям, расположенных в верхней части цеха, он не занимает полезной площади.

Электропривод большинства грузоподъёмных машин характеризуется повторно - кратковременном режимом работы при большей частоте включения, широком диапазоне регулирования скорости и постоянно возникающих значительных перегрузках при разгоне и торможении механизмов. Особые условия использования электропривода в грузоподъёмных машинах явились основой для создания специальных серий электрических двигателей и аппаратов кранового исполнения. В настоящее время крановое электрооборудование имеет в своём составе серии крановых электродвигателей переменного и постоянного тока, серии силовых и магнитных контроллеров, командоконтроллеров, кнопочных постов,онечных выключателей, тормозных электромагнитов и электрогидравлических толкателей, пускотормозных резисторов и ряд других аппаратов, комплектующих разные крановые электроприводы.

В крановом электроприводе начали довольно широко применять различные

системы тиристорного регулирования и дистанционного управления по радио каналу или одному проводу.

В настоящее время грузоподъемные машины выпускаются большим числом заводов. Эти машины используются во многих отраслях народного хозяйства в металлургии, строительстве, при добыче полезных ископаемых, машиностроении, транспорте, и в других отраслях.

Развитие машиностроения, занимающиеся производством грузоподъемных машин, является важным направлением развития народного хозяйства страны.

1 КРАТКАЯ ХАРАКТЕРИСТИКА МОСТОВОГО КРАНА.

Электрические подъёмные краны - это устройства служащие для вертикального и горизонтального перемещения грузов. Подвижная металлическая конструкция с расположенной на ней подъемной лебёдкой являются основными элементами подъёмного крана. Механизм подъемной лебёдки приводится в действие электрическим двигателем.

Подъемный кран представляет собой грузоподъемную машину циклического действия, предназначенную для подъема и перемещения груза, удерживаемого грузозахватным устройством (крюк, грейфер). Он является наиболее распространенной грузоподъемной машиной, имеющей весьма разнообразноеМостовой кран (рисунок 1) представляет собой мост, перемещающейся по крановым путям на ходовых колесах, которые установлены на концевых балках. Пути укладываются на подкрановые балки, опирающиеся на выступы верхней части колонны цеха. Механизм передвижения крана установлен на мосту крана. Управление всеми механизмами происходит из кабины прикрепленной к мосту крана. Питание электродвигателей осуществляется по цеховым троллеям. Для подвода электроэнергии применяют токосъемы скользящего типа, прикрепленные к металлоконструкции крана. В современных конструкциях мостовых кранов токопровод осуществляется с помощью гибкого кабеля. Привод ходовых колес осуществляется от электродвигателя через редуктор и трансмиссионный вал.

Любой современный грузоподъемный кран в соответствии с требованиями безопасности, может иметь для каждого рабочего движения в трех плоскостях, следующие самостоятельные механизмы: механизм подъема - опускания груза, механизм передвижения крана в горизонтальной плоскости и механизмы обслуживания зоны работы крана (передвижения тележки).

Грузоподъемные машины изготовляют для различных условий использования:

по степени загрузки, времени работы, интенсивности ведения операций, степени ответственности грузоподъемных операций и климатических факторов эксплуатации.

К основным параметрам механизма подъёма относятся:

грузоподъемность, скорость подъема крюка, режим работы, высота подъема грузозахватного устройства.

Рисунок 1 – Общий вид мостового крана

Номинальная грузоподъемность - масса номинального груза на крюке или захватном устройстве, поднимаемого грузоподъемной машиной.

Скорость подъема крюка выбирают в зависимости от требований технологического процесса, в котором участвует данная грузоподъемная машина, характера работы, типа машины и ее производительности.

2 УСЛОВИЯ РАБОТЫ И ОБЩАЯ ТЕХНИЧЕСКАЯ ХАРАКТЕРИСТИКА ЭЛЕКТОРОБОРУДОАНИЯ МОСТОВОГО КРАНА.

Повышенная опасность работ при транспортировке поднятых грузов требует при проектировании и эксплуатации соблюдение обязательных правил по устройству и эксплуатации подъемно-транспортных машин. На механизмах подъема и передвижения правилами по устройству и эксплуатации предусмотрена установка ограничителей хода, которые воздействуют на электрическую схему управления. Конечные выключатели механизма подъема ограничивают ход грузозахватывающего приспособления вверх, а выключатели механизмов передвижения моста и тележки ограничивают ход механизмов в обе стороны. Предусматривается также установка конечных выключателей, предотвращающих наезд механизмов в случае работы двух и более кранов на одном мосту. Исключение составляют установки со скоростью движения до 30 м/мин. Крановые механизмы должны быть снабжены тормозами закрытого типа, действующими при снятии напряжения.

На крановых установках допускается применять рабочее напряжение до 500 В, поэтому крановые механизмы снабжают электрооборудованием на напряжения 220, 380, 500 В переменного тока и 220, 440 В постоянного тока. В схеме управления предусматривают максимальную защиту, отключающую двигатель при перегрузке и коротком замыкании. Нулевая защита исключает самозапуск двигателей при подаче напряжения после перерыва в электроснабжении. Для безопасного обслуживания электрооборудования, находящегося на ферме моста, устанавливают, блокировочные контакты на люке и двери кабины. При открывании люка или двери напряжение с электрооборудования снимается.

Правилами Госгортехнадзора предусматривается четыре режима работы механизмов: лёгкий - Л, средний - С, тяжёлый - Т, весьма тяжёлый - ВТ.

Проектируемый мостовой кран работает в среднем режиме с ПВ = 40%.

2.1 Кинематические схемы основных механизмов

Работу основных механизмов крана рассматривают по кинематическим схемам. Так как двигатели обычно имеют угловую скорость, значительно большую, чем скорость подъемного барабана или ходовых колес моста или тележки, то движение к рабочим органам механизмов крана передается через редукторы (на рисунках обозначены буквой Р).

Для механизмов подъема наибольшее применение получили схемы с полиспастом П (рисунок 2), при помощи которого движение от барабана Б передается крюку К.

На рисунке 3 представлена схема механизма тележки, которая обычно имеет четыре ходовых колеса, два из которых, соединены валом, приводятся в движение через редуктор Р от двигателя Д.

Передача движения к ходовым колесам концевых балок от двигателя, установленного на мосту, может осуществляться через редуктор Р, расположенного в средней части моста (рисунок 4).

Каждый механизм крана имеет механический тормоз Т, который устанавливается на соединительной муфте между двигателем и редуктором или на тормозном шкиве на противоположном конце вала двигателя.


Рисунок 2. Кинематическая схема подъемного механизма

Рисунок 3. Кинематическая схема тележки

Рисунок 4. Кинематическая схема моста

    ТРЕБОВАНИЯ К СИСТЕМЕ ЭЛКТРОПРИВОДА И ОБОСНОВАНИЯ ВЫБРАНОГО ТИПА ЭЛЕКТРОПРИВОДА.

Для выбора системы электропривода необходимо четко представлять себе технологические требования к приводу того механизма, для которого он выбирается.

Для качественного выполнения подъема, спуска и перемещения грузов электропривод крановых механизмов должен удовлетворять следующим основным требованиям:

1 Регулирование угловой скорости двигателя в сравнительно широких пределах в связи с тем, что тяжелые грузы целесообразно перемещать с меньшей скоростью, а пустой крюк или ненагруженную тележку – с большей скоростью для увеличения производительности крана. Пониженные скорости необходимы также для осуществления точной остановки транспортируемых грузов с целью ограничения ударов при их посадке и облегчают работу оператора. Обеспечение необходимой жесткости механических характеристик привода, особенно регулировочных, с тем чтобы низкие скорости почти не зависели от груза.

3 Ограничение ускорений до допустимых пределов при минимальной длительности переходных процессов. Первое условие связано с ослаблением ударов в механических передачах при выборе зазора, с предотвращением пробуксовки ходовых колес тележек и мостов, с уменьшением раскачивания подвешенного на канатах груза при интенсивном разгоне и резком торможении механизмов передвижения; второе условие необходимо для обеспечения высокой производительности крана.

4 Реверсирование электропривода и обеспечение его работы, как в двигательном режиме, так и в тормозном режиме.

4 РЕЖИМЫ РАБОТЫ ДВИГАТЕЛЕЙ КРАНА

Электродвигатели, установленные на кранах, работают в тяжелых условиях, часто в помещениях с повышенной температурой или с большим содержанием в них паров и газов, а также на открытом воздухе. Мостовые краны имеют повторно-кратковременный режим работы, с частыми пусками и торможениями.

Повторно - кратковременный режим – это режим работы двигателя, при котором рабочие периоды t раб чередуются с периодами отключения t 0 .

Повторно - кратковременный режим работы характеризуется относительной продолжительностью включения (ПВ).

где, t раб – время работы (с)

t ц – время цикла (с)

Номинальное значение относительной продолжительности включения – 15, 25, 40, 60%.

Рассмотрим режимы работы двигателей, которые представлены на рисунке 5.

Двигатели механизмов моста и тележки при работе с грузом и без груза работают в нормальном двигательном режиме.

При подъеме груза или пустого крюка двигатель подъемного механизма работает в двигательном режиме, а при опускании груза возможны два случая:

Если момент груза М гр больше момента двигателя М дв, то груз будет опускаться под действием собственного веса с учетом момента трения М тр и электродвигатель должен быть включен на подъем, чтобы подтормаживать груз, то есть в этом случае момент двигателя равен

М дв = М гр - М тр

Такой режим называется тормозным спуском.

Если момент груза будет меньше момента трения, то электродвигатель должен быть включен на спуск и способствовать опусканию груза, то есть работать в двигательном режиме, в этом случае момент двигателя равен

дв = М тр - М гр

Такой режим называется силовым спуском.

П

Силовой спуск малых грузов (двигательный режим)

Передвижение (двигательный режим)

Подъем груза (двигательный режим)

Тормозной спуск груза

Рисунок 5. Режимы работы двигателей крана

Ри опускании пустого крюка так же возможны два случая, то есть спуск может быть и тормозным и силовым.

5 РАСЧЕТ МОЩНОСТИ ЭЛЕКТРОВИГАТЕЛЕЙ, ИХ ВЫБОР ПО КАТЕГОРИЯМ И ПРОВЕРКА.

5.1 Двигателя моста.

Определяем сопротивление движению механизма при перемещении с полным грузом по формуле 1

(1)

где, F Г – сопротивление движению механизма при перемещении с полным грузом, Н;

G Г – вес крана с грузом, Н;

G 0 – вес крана без груза, Н;

r – радиус цапфы колеса, м;

Принимаем:

f = (0, 0005-0,001).

µ = (0,015-0,02);

Вычисляем вес крана с грузом

G Г = m Г · g · 10 3 (2)

где m Г – грузоподъемность крана, т;

G Г = 10 · 9,8 · 10 3 =98000 Н

Вычисляем вес крана без груза

G 0 = m 0 · g · 10 3 (3)

где m 0 – вес моста, т.

G 0 = 12 · 9,8 · 10 3 = 117600 Н

Вычисляем радиус ходового колеса

R = (4)

где D х – диаметр ходовых колес моста, м.

R =
м

Вычисляем радиус цапфы колеса

r =
(5)

где D ц – диаметр цапфы колес моста, м.

r =
м

Вычисляем сопротивление движению механизма по формуле 1

Определяем сопротивление движению механизма при перемещении без груза по формуле 6

(6)

где,– F 0 сопротивление движению механизма при перемещении без груза, Н;

К – коэффициент трения ребер колес о рельсы;

G 0 – вес крана без груза, Н;

R – радиус ходового колеса, м;

µ - коэффициент трения скольжения в подшипнике;

r – радиус цапфы колеса, м;

f – коэффициент трения качения ходового колеса;

Принимаем:

µ = (0,015-0,02);

f = (0,0005-0,001).

Вычисляем F 0 по формуле:

Рассчитываем момент статического сопротивления на валу электродвигателя при движении с грузом по формуле 7

(7)

где, М с1 – момент статического сопротивления на валу электродвигателя при движении с грузом, Н·м;

Г – сопротивление движению механизма при перемещении с полным грузом, Н;

n – частота вращения двигателя, об/мин;

Находим частота вращения двигателя по формуле 8

D х – диаметр ходового колеса, м.

об/мин

Н·м

Рассчитываем коэффициент загрузки крана на холостом ходу по формуле 9

(9)

G Г – вес крана с грузом, Н;

G 0 – вес крана без груза, Н.

Рассчитываем момент статического сопротивления на валу без груза по формуле 10

(10)

где, М с2 – момент статического сопротивления на валу двигателя при

движении без груза, Н·м;

F 0 – сопротивление движению механизма при перемещении без груза, Н;

V – скорость перемещения моста, м/с;

n – частота вращения двигателя, об/мин

- КПД механизма без груза.

Вычисляем КПД механизма без груза по формуле 11

(11)

где, К з – коэффициент загрузки крана на холостом ходу;

КПД механизма при полном грузе.

Рассчитываем средний статический эквивалентный момент по формуле 12

(12)

где, М э – средний статистический момент, Н·м;

М с1 – момент статического сопротивления на валу электродвигателя при движении с грузом, Н·м;

М с2 – момент статического сопротивления на валу двигателя при движении без груза, Н·м.

Н·м

Находим среднюю эквивалентную мощность механизма по формуле 13

(13)

где, Р э – средняя эквивалентная мощность механизма, кВт;

М э – средний статистический момент, Н·м;

n – частота вращения двигателя, об/мин.

кВт

Вычисляем время цикла по формуле 14

(14)

где, t ц – время цикла, с;

Z – число циклов в час

3600 – 1 час, с;

с

Вычисляем время работы при движении с грузом и без него по формуле 15

(15)

где, t раб – время работы при движении с грузом и без него, с;

L – путь перемещения механизма, м;

V – скорость перемещения моста, м/с.

с

Вычисляем продолжительность включения механизма во время работы по формуле 16

(16)

где,

t раб – время работы при движении с грузом и без него, с;

t ц – время цикла, с.

Приводим ПВ р к стандартному значению ПВ ст = 30%

Рассчитываем мощность двигателя по формуле 17

где, Р ПВст – мощность двигателя моста, кВт;

Р э – средняя эквивалентная мощность механизма, кВт;

ПВ р – продолжительность включения механизма во время работы, %;

2,63 кВт

По расчетной частоте вращения,учитывая род тока по величине Р ПВст выбираем двигатель постоянного тока Д31 данные которого приведены в таблице 1.

аблица 1

Определим номинальный момент по формуле 18

М н =9,55·Рн/n (18)

М н =9,55·8000/820=93,1 Н·м;

    Определим средний пусковой момент двигателя по формуле 19

М п =1,6-1,8М Н (19)

где, М н =93,1 Н·м;

М п =1,6·93,1=148,96 Н·м;

2. Определим маховый момент,приведенный к валу двигателя при движении моста с грузом и без него

С грузом по формуле 20

СД гр ²=1,15 СД дв ²+365(G г + G 0)V²/n² Н·м (20)

Iя=0,3 кг·м²

СД дв ²=0,3·40=12 кг·м²

СД гр ²=1,15·12+365(98000+117600) ·1,25²/820²=196,3 Н·м²

Без груза по формуле 21

Рассчитываем время пуска для каждой операции

Максимально допустимое время пуска для механизмов передвижения 10-15 сек

С грузом по формуле 22

t п1= СД гр ²·n/375· (Мп-Мст1) сек (22)

t п1= 196,3·820/375· (148,96-113,4)=12 сек

Без груза по формуле 23

t п2= СД гр ²·n/375· (Мп-Мст2) сек (23)

t п2= 113,5·820/375(148,96-67,5)=3 сек

т.к.получилось малое время пуска двигателя перемещения моста без груза

t п2= 3 сек просчитаем двигатель меньшей мощности

Проверим двигатель постоянного тока Д 22

Определим номинальный момент по формуле 18

М н =9,55 · Рн/n (18)

М н =9,55 · 6000/1070=53,5

    Определяем средний пусковой момент двигателя по формуле 19

М п =1,8 · М н (19)

М п =1,8 · 53,5=96,3

2. Определим маховый момент,приведенный к валу двигателя при движении моста с грузом по формуле 20

I я = 0,155 кг · м²

СД дв ²=0,155 · 40 =6,2 кг · м²

СД гр ²=1,15 · 6,2+365(98000+117600)1,25 ² /1070²=114,52 Н·м²

3.без груза по формуле 21

СД 0 ²=1,15 · 6,2+365(117600 · 1,25 ²)/1070 ²=65,7 Н·м²

4.Рассчитываем время пуска для каждой операции с грузом по формуле 22

t п1= (114,52 · 1070)/375(96,3-113,4)=-19,1 сек

т.к получилось отрицательное значение время пуска двигателя перемещения моста t п1= -19,1 то двигатель Д 22 не подходит

ля двигателя Д 31 при расчетах время пуска без груза уменьшим пусковой момент за счет введения в цепь реостата по формуле 22

М п =1 М н =1 · 93,1=93,1 Н·м (22)

5.Вычисляем время пуска без груза по формуле 23

t п2 =113,5 · 820/375(93,1-67,5)=9,6 сек

6.Рассчитаем время торможения при каждой операции с грузом по формуле 24

t т = СД гр ² · n/375(М т+ М ст) сек (24)

М т = М н =93,1 Н·м

t т1 =196,3 · 820/375(93,1+113,4)=2 сек

7.Для расчета время торможения без груза ограничим тормозной момент по формуле 24

М т =0,8 М ном =0,8 · 93,1=74,48 Н·м (25)

t т2= 113,5 · 820/375(74,48+67,5)=1,74 сек

8.Замедление находим по формуле 26

а=v/ t n ≤0.6;0.8 (26)

без груза

1=0,6≤0,6;0,8 а2=0,7≤0,6;0,8

9. Определим время установившегося движения t ус по формуле 27

t у =360 · 0,106-12-9,6-2-1,74/2=6,4 сек

10. Строим нагрузочную диаграмму




11.Расчитаем эквивалентный момент по формуле 28

(28)

2. Определим эквивалентный момент пересчитанный на стандартный ПВ по формуле 29

(29)

=48,6 Н·м

48,6≤93,1-условия выполняется,двигатель проверяем по максимально допустимой перегрузке

0,8λкр·Пн≤Мст.мах

0,8·3·93,1≤113,4

Условия выполняется следовательно для перемещения моста применяем двигатель постоянного тока Д 31

5.2Двигателя тележки

1. Определяем сопротивление движению механизма при перемещении с полным грузом по формуле 1

Определяем вес крана G Г с грузом по формуле 2

G Г = 10 · 9,8 · 10 3 = 98000 Н

Определяем вес крана без груза G 0 по формуле 3

G 0 = m 0 · g · 10 3 (3)

где, m 0 – вес тележки, т.

G 0 = 5,6 · 9,8 · 10 3 = 54880 Н

Находим радиус ходового колеса по формуле 4

где, D х – диаметр ходовых колес тележки, м.

Находим радиус цапфы колеса по формуле 5

где, D ц – диаметр цапфы колес тележки, м.

r =
м

Находим сопротивление движению механизма при перемещении с полным грузом по формуле 1

2. Определяем сопротивление движению механизма при перемещении без груза по формуле 6

3. Рассчитываем момент статического сопротивления на валу электродвигателя при движении с грузом по формуле 7

об/мин

Н·м

4. Рассчитываем коэффициент загрузки крана на холостом ходу по формуле 9

(9)

=0,35

5.Определим КПД х.х по формуле 11

6. Рассчитываем момент статического сопротивления на валу без груза по формуле 10

Н·м

7. Рассчитываем средний статический эквивалентный момент по формуле 12

Н·м

8. Находим среднюю эквивалентную мощность механизма по формуле 13

кВт

9. Вычисляем время цикла по формуле 14

(14)

с

0. Вычисляем время работы при движении с грузом и без него по формуле 15

(15)

с

11. Вычисляем продолжительность включения механизма во время работы по формуле 16

(16)

Приводим ПВ р к стандартному значению ПВ ст = 25%

12. Рассчитываем мощность механизма по формуле 17

кВт

По полученной мощности механизма и расчетной частоте вращения,учитывая род тока, выбирается двигатель постоянного тока марки Д 12 , данные которого приведены в таблице 2.

Таблица 2

Проверяем выбранный двигатель.

Двигатель проверяется по двум условиям;

1. Определим средний пусковой момент по формуле 18

М пуск = (1,6-1,8) ·М ном (18)

где, М ном – номинальный момент двигателя, Н·м определяем по формуле 19

(19)

Н·м

М пуск = 1,6 · 20,9 = 33,44 Н·м

2.Рассчитываем маховый момент,приведенный к валу двигателя

с грузом по формуле 20

І я =0,05 кг·м 2

СД дв ²=0,05 · 40=2

СД гр ²=1,15 СД дв ²+365(Сг+С0) · V/n² Н·м² (20)

СД гр ²=1,15 · 2+365(98000+54880) · 0,6²/1140²=17,7 Н·м²

Без груза по формуле 21

СД 0 ²=1,15 СД дв ²+365(С 0 · V²)/n² Н·м² (21)

СД 0 ²=1,15·2+365(54880 · 0,6²)/1140²=7,8 Н·м²

3. Теперь рассчитываем время пусков для каждой операции

С грузом по формуле 22

с

4. Вычисляем тормозное время

т = М ном =20,9 Н·м

С грузом по формуле 24

с

Без груза по формуле 24

5. Замедление по формуле 26

а=V/tт≤0,6-0,8 (26)

а1 =0,6/1,3=0,46

без груза

а2=0,6/0,83=0,72

а1=0,46≤0,6-0,8

а2=0,72≤0,6-0,8

6. Вычисляем установившееся время движения механизма по формуле 27

Строим нагрузочную диаграмму

8. Определяем эквивалентный момент двигателя по формуле 28

9. Рассчитываем эквивалентный момент по формуле 29

=7,1 Н · м

7,1≤20,9 –условие выполняется,двигатель проверяем по максимально допустимой перегрузке

0,8λкр·Пн≤Мст.мах

0,8·3·20,9≤17,8

Двигатель имеет малую нагрузку,т.к двигателей меньшей мощности нет

5.3 Двигателя подъемного механизма

1. Определяем момент статического сопротивления на валу двигателя при подъеме груза по формуле 30

где,

G Г – вес крана с грузом, Н;

G 0 – вес крана (грузозахватывающего устройства) без груза, Н;

КПД подъемника при подъеме груза;

i рп – передаточное число редуктора с учетом кратности полиспастов.

g – ускорение свободного падения, м/с.

Находим вес крана (грузозахватывающего устройства) без груза по формуле 3

G 0 = m 0 · g · 10 3 (3)

где, m 0 – вес грузоподъемного устройства, т.

G 0 = 1,2 · 9,8 · 10 3 =11760 Н

i рп = i р · i п =34,2 · 2=68,4

где, i р – передаточное число редукции привода;

i п – кратность полиспастов.

Н·м

2. Определяем момент статического сопротивления на валу двигателя при опускании груза (тормозной спуск) по формуле 31

М с2 = М с1 ·(2·-1) (31)

где, М с2 – момент статического сопротивления на валу двигателя при опускании груза, Н·м;

М с1 – момент статического сопротивления на валу электродвигателя при подъеме груза, Н·м;

КПД подъемника.

М с2 = 457·(0,79·2-1) = 265 Н·м

3. Определяем момент статического сопротивления на валу двигателя при подъеме грузозахватывающего устройства по формуле 32

(32)

где, М с3 - момент статического сопротивления на валу двигателя при подъеме грузозахватывающего устройства без груза, Н·м;

G 0 – вес грузозахватывающего устройства без груза, Н;

D б – диаметр барабана подъемной лебедки, м;

i рп – передаточное число редуктора с учетом кратности полиспастов;

4. Находим КПД подъемника при подъеме и спуске грузозахватывающего устройства без груза по формуле 11

(11)

5. Рассчитываем коэффициент загрузки крана на холостом ходу по формуле 9

6. Определяем момент статического сопротивления на валу двигателя при спуске грузозахватывающего устройства без груза по формуле 31

М с4 = М с3 ·(2·-1) (31)

где, М с4 - момент статического сопротивления на валу двигателя при спуске грузозахватывающего устройства без груза, Н·м;

М с3 - момент статического сопротивления на валу двигателя при подъеме

грузозахватывающего устройства без груза, Н·м;

КПД подъемника при подъеме и спуске грузозахватывающего устройства без груза.

М с4 = 265·(2·0,38-1) = -63,6 Н·м

7. Вычисляем эквивалентный статический момент со штрихом по формуле 33

(33)

где, М э ’ - эквивалентный момент со штрихом, Н·м;

М с1 – момент статического сопротивления на валу электродвигателя при подъеме груза, Н·м;

М с2 – момент статического сопротивления на валу двигателя при опускании груза, Н·м;

М с3 - момент статического сопротивления на валу двигателя при подъеме грузозахватывающего устройства без груза, Н·м;

М с4 - момент статического сопротивления на валу двигателя при спуске грузозахватывающего устройства без груза, Н·м.

8. Вычисляем время цикла по формуле 14

(14)

с

9. Вычисляем время работы при движении с грузом и без него по формуле 15

(15)

где, L – высота подъема, м.

с

10. Вычисляем продолжительность включения механизма во время работы

Приводим ПВ р к стандартному значению ПВ ст = 40%

11. Определяем эквивалентный статический момент по формуле 28

(28)

где, М э - эквивалентный статический момент, Н·м;

М э ’ - эквивалентный момент со штрихом, Н·м;

ПВ р – продолжительность включения механизма во время работы, %;

ПВ ст – стандартная продолжительность включения, %.

Н·м

12. Находим частоту вращения двигателя по формуле 8

(8)

где, i рп – передаточное число редукции привода с учетом кратности полиспастов;

D б – диаметр барабана, м.

об/мин

13. Находим среднюю эквивалентную мощность механизма по формуле 13

кВт

По полученной мощности механизма выбирается двигатель постоянногоокаД806

Проверяем выбранный двигатель.

Таблица 3

Производим расчет и построение нагрузочной диаграммы

Педварительно выбранный двигатель проверяется по условиям нагрева, строится нагрузочная диаграмма с учетом пусковых и тормозных режимов

1. Определим средний пусковой момент по формуле 19

М пуск – среднее значение пускового момента двигателя, Н·м;

М пуск = (1,6-1,8) ·М ном (19)

где, М ном – номинальный момент двигателя, Н·м.определяем по формуле 18

где, Р ном – номинальная мощность выбранного двигателя, кВт;

n ном – номинальная частота вращения выбранного двигателя, об/мин.

М пуск = 1,5 · 330 = 495 Н·м

2.Рассчитываем маховый момент, приведенный к валу двигателя по формуле 20

СД дв ²=1·40=40 кг·м²

СД гр ²=1,15 ·СД дв ²+365(Сг+С0) ·V/n² Н·м² (20)

СД гр ²=1,15·40+365(9800+11760) ·0,2²/635²=53,3 Н·м²

Без груза по формуле 21

СД 0 ²=1,15 СД дв ²+365(С 0 ·V²)/n² Н·м² (21)

СД 0 ²=1,15·40+365(11760·0,2²)/635²=46,42 Н·м²

3. Теперь рассчитываем время пусков для каждой операции по формуле 22

с

с

Без груза

с

4. Вычисляем тормозное время по формуле 24

т = М ном =330 Н·м

t т1 ,t т2 – время тормозное с грузом и без него, с.

с

Без груза

с

5. Замедление по формуле 25

а=V/tт≤0,6-0,8 (25)

а1 =0,2/0,1=2 а2=0,2/0,15=1,33

без груза

а3=0,2/0,18=1,11 а4=0,2/0,29=0,68

6. Определим время установившегося движения t ус по формуле 26 (26)

7. Рассчитаем эквивалентный момент по формуле 27

8. Рассчитываем эквивалентный момент по формуле 28

=288,33 Н·м

288,33≤330 –условие выполняется,двигатель удовлетворяет условиям нагрева

9. Проверяем на перегрузку по формуле 34

Λ кр =Ммах/Мн=981/330=2,9 (34)

0,8λкр·Пн≤Мст.мах

0,8·2,9·330≥457

Условие выполняется,двигатель Д806 с мощностью 22кВт берем в качестве привода механизма подъема

РАСЧЕТ И ПОСТРОЕНИЕ МЕХАНИЧЕСКИХ ХАРАКТЕРИСТИК ДВИГАТЕЛЕЙ.

Механической характеристикой называется зависимость скорости вращения двигателя от момента.

Характеристика двигателя будет естественной при условиях:

Напряжение на статоре должно быть номинальным;

Если отсутствуют добавочные сопротивления в статоре и роторе;

На переменном токе частота будет ровна 50 Гц;

Для того чтобы построить естественную характеристику необходимо рассчитать три точки для механизмов.

6.1 Для двигателя моста определим точку х.х М=I=0

Точка 1 имеет координаты

где, n 0 – обороты двигателя при пуске, об/мин.

Рассчитываем Т1- на идеальном холостом ходу

Находим обороты двигателя при пуске по формуле 35

n 0 =Uн/nн ·Uн-Iн ·Rдв об/мин

где, n 0 – обороты двигателя при пуске, об/мин;

Rдв =0,5 · Uн(1- nн)/ Iн=0,5 ·220(1-0,84)/44=0,4 Ом

n 0 =820 ·220/220-44 ·0,4=885,6 об/мин

Точка 2 имеет координаты

Т2 (М ном; n ном)

n ном –номинальные обороты двигателя, об/мин.

М=Мн=9,55 ·Рн/ n ном =9,55 ·8000/820=93,1 Н·м

Рассчитываем Т2 – в рабочем или номинальном Т2 (93,1; 820)

Механическая характеристика двигателя моста

2 Для двигателя тележки

Точка 1 имеет координаты

(36)

Rдв =0,5 · Uн(1- nн)/ Iн=0,5 ·220(1-0,85)/14,6=1,13 Ом

n 0 =1140 ·220/220-14,6 ·1,13=1231,2 об/мин

Точка 2 имеет координаты

Т2 (М ном; n ном)

где, М ном – номинальный момент двигателя, Н·м; находим по формуле 18

М=Мн=9,55 ·Рн/ n ном =9,55 ·2500/1140=20,9 Н ·м

Т2 (20,9; 1140)

Механическая характеристика двигателя тележки

3 Для двигателя подъемного механизма

Точка 1 имеет координаты

Находим обороты двигателя при пуске по формуле 36

Rдв =0,5 · Uн(1- nн)/ Iн=0,5 ·220(1-0,79)/116=0,19 Ом

n 0 =635 ·220/220-116 ·0,19=704,85 об/мин

Точка 2 имеет координаты

Т2 (М ном; n ном)

где, М ном – номинальный момент двигателя, Н·м; находим по формуле 18

n ном – номинальные обороты двигателя, об/мин.

М=Мн=9,55 ·Рн/ n ном =9,55 ·22000/635=330 Н ·м

Механическая характеристика двигателя подъемного механизма

РАСЧЕТ И ВЫБОР ПУСКОВЫХ, ТОРМОЗНЫХ И РЕГУЛИРОВОЧНЫХ СОПРОТИВЛЕНИЙ.

Пусковым сопротивлением (реостатом) называется устройство, служащее для введения и выведения сопротивления в цепи ротора в период пуска и разгона электропривода.

Введение и выведение сопротивления производится ступенчато (секциями).

Для расчета пусковых сопротивлений задаются числа ступеней Z

Z=1-2 для двигателей до 10 кВт

Z=2-3 для двигателей до 50 кВт

Аналитический метод

7.1. Расчеты ведем для моста

1. Для моста Z=2

М=Мст1/Мн=113,4/93,1=1,21 (37)

Iст.мах= I · Iн=1,21 ·44=53,24 А (38)

I 2 =(1,1-1,2) Iст.мах=1,2 ·53,24=63,88 А (39)

(40)

где, - отношение I 1 к I 2 ;

(42)

Ом

(43)

где,

Отношение I 1 к I 2 .

Ом

(44)

R 2 - сопротивление на второй ступени, Ом;

Отношение I 1 к I 2 .

Ом

9.Находим расчетный момент по формуле 45

М 1 =I 1 /Iн ·Мн=130,3/44 ·93,1=275,7 Н ·м

М 2 =I 2 /Iн ·Мн=63,88/44 ·93,1=135,1 Н ·м

r 1 = R 1 – R 2 (46)

r 2 = R 2 – R 3

r 1 = 1,68 – 0,82 = 0,86 Ом

r 2 = 0,82 – 0,4 = 0,42 Ом

R п = r 1 - r дв (47)

R п = 1,68- 0,4 = 1,28 Ом

RUн/Iн=220/44=5 Ом

R1=a1/a=30/90=0.33 R1=R1 ·Rn=0.33 ·5=1.65

R2=aв/aд=15/90=0.16 R2=R2 ·Rn=0.16 ·5=0.8

Rn=Un/In=220/44=5 Rдв= Rдв ·Rn=0.08 ·5=0.4

Rдв=aб/aд=8/90=0,08

Все расчеты произведены верно

7.2. Для тележки

1. Для тележки Z=2

Определяем момент на двигателе по формуле 37

М=Мст1/Мн=17,8/20,9=0,85 (37)

2. Рассчитываем максимальный статический ток по формуле 38

Iст.мах= I · Iн=0,85 ·14,6=12,41 А (38)

3. Рассчитываем ток при расчете пускового сопротивления по формуле 39

I 2 =(1,1-1,2) Iст.мах=1,2 ·12,41=14,89 А (39)

4. Определяем расчетный ток при расчете пускового сопротивления по формуле 40

5. Находим отношение I 1 к I 2 по формуле 41

где, - отношение I 1 к I 2 ;

I 1 - расчетный ток при расчете пускового сопротивления, А;

I 2 - ток при расчете пускового сопротивления, А.

6. Вычисляем сопротивление на первой ступени по формуле 42

где, R 1 - сопротивление на первой ступени, Ом;

U 2 – номинальное напряжение между кольцами ротора, В;

I 1 - расчетный ток при расчете пускового сопротивления, А.

Ом

7. Вычисляем сопротивление на второй ступени по формуле 43

R 1 - сопротивление на первой ступени, Ом;

Отношение I 1 к I 2 .

Ом

8. Вычисляем сопротивление двигателя по формуле 44

где, R дв - сопротивление на третьей ступени, Ом;

R 2 - сопротивление на второй ступени, Ом;

Отношение I 1 к I 2 .

Ом

М 1 =I 1 /Iн ·Мн=34,9/14,6 ·20,9=50 Н ·м (45)

М 2 =I 2 /Iн ·Мн=14,89/14,6 ·20,9=21,3 Н ·м

10. Находим сопротивления секций пускового реостата по формуле 46

r 1 = R 1 – R 2 (46)

r 2 = R 2 – R 3

где, r 1 , r 2 , сопротивления первой, второй и третьей секции, Ом;

R 1 , R 2 , R 3 – сопротивления первой, второй и третьей ступени, Ом;

R дв – сопротивление двигателя, Ом.

r 1 = 6,3 - 2,7 = 3,6 Ом

2 = 2,7 – 1,17 = 1,53 Ом

11. Находим общее пусковое сопротивление реостата по формуле 47

R п = r 1 - r дв (47)

R п = 6,3- 1,17 = 5,13 Ом

R н =Uн/Iн=220/14,6=15 Ом

12. Произведем расчет пусковых сопротивлений для механизма моста графическим способом

R1=a1/a=50/121=0.41 R1=R1 ·Rn=0.41 ·15=6,15

R2=aв/aд=21/121=0,17 R2=R2 ·Rn=0.17 ·15=2,55

Rn=Un/In=220/14,6=15 Rдв= Rдв ·Rn=0.07 ·15=1,05

Rдв=aб/aд=9/121=0,07

Все расчеты произведены верно

7.3 Для подъемного механизма

1. Для моста Z=3

Определяем момент на двигателе по формуле 37

М=Мст1/Мн=457/330=1,38 (37)

2. Рассчитываем максимальный статический ток по формуле 38

Iст.мах= I · Iн=1,38 ·116=160 А (38)

3. Рассчитываем ток при расчете пускового сопротивления по формуле 39

I 2 =(1,1-1,2) Iст.мах=1,2 ·160=192 А (39)

Определяем расчетный ток при расчете пускового сопротивления по формуле 40

5. Находим отношение I 1 к I 2 по формуле 41

где, - отношение I 1 к I 2 ;

I 1 - расчетный ток при расчете пускового сопротивления, А;

I 2 - ток при расчете пускового сопротивления, А.

6. Вычисляем сопротивление на первой ступени по формуле 42

где, R 1 - сопротивление на первой ступени, Ом;

U 2 – номинальное напряжение между кольцами ротора, В;

I 1 - расчетный ток при расчете пускового сопротивления, А.

Ом

Вычисляем сопротивление на второй ступени по формуле 43

где, R 2 - сопротивление на второй ступени, Ом;

R 1 - сопротивление на первой ступени, Ом;

Отношение I 1 к I 2 .

Ом

8. Вычисляем сопротивление двигателя по формуле 44

(44)

где, R дв - сопротивление на третьей ступени, Ом;

R 2 - сопротивление на второй ступени, Ом;

Отношение I 1 к I 2 .

Ом

Находим полное сопротивление по формуле 48

Rп=R1-Rдв=0,73-0,18=0,550 Ом (48)

9. Находим расчетный момент по формуле 45

М 1 =I 1 /Iн ·Мн=299,52/116 ·330=852 Н ·м

М 2 =I 2 /Iн ·Мн=192/116 ·330=546,2 Н ·м

10. Находим сопротивления секций пускового реостата по формуле 46

r 1 = R 1 – R 2

r 2 = R 2 – R 3

где, r 1 , r 2 ,r 3 сопротивления первой, второй и третьей секции, Ом;

R 1 , R 2 , R 3 – сопротивления первой, второй и третьей ступени, Ом;

R дв – сопротивление двигателя, Ом.

r 1 = 0,73 – 0,46 = 0,27 Ом

r 2 = 0,46 – 0,29 = 0,17 Ом

r 3 =0,29-0,18=0,11

R н =Uн/Iн=220/116=1,89 Ом

11. Произведем расчет пусковых сопротивлений для механизма моста графическим способом

R1=a1/a=27/71=0.38 R1=R1 ·Rn=0.38 ·1,89=0,71

R2=aв/aд=17/21=0.23 R2=R2 ·Rn=0.23 ·1,89=0.43

R3=aв/aд=11/71=0.15 R3=R3 ·Rn=0.15 ·1,89=0.28

Rn=Un/In=220/116=1,89 Rдв= Rдв ·Rn=0.09 ·1,89=0,17

Rдв=aб/aд=7/71=0,09

се расчеты произведены верно

    Выбор схемы управления

Принципиальная схема –это схема электрических соединений,выполненная в развернутом виде.Она является основной схемой проекта

электрооборудования мостового крана и дает общее представление об электрооборудовании данного механизма,отражает работу системы автоматического управления механизмом. По схеме осуществляется проверка правильности электрических соединений при монтаже и наладке электрооборудования.

В схему управления мостового крана входит защитная панель ППЗК,схема электропривода механизма перемещения моста,схема электропривода механизма перемещения тележки,подъема.

9. ВЫБОР АППАРАТУРЫ УПРАВЛЕНИЯ И ЗАЩИТЫ.

9.1 Контроллеры

Контроллеры бывают силовые (кулачковые) и магнитные (командо - контроллеры).

Силовые контроллеры своими контактами включаются в силовые цепи двигателей.

Магнитные контроллеры своими контактами включаются в цепи управления и через эти контакты в определенных положениях получают питание катушки контакторов, которые уже своими контактами будут давать питание на двигатель.

1. Выбор контроллера для моста и тележки

При выборе контроллера нужно учитывать;

Мощность двигателя;

Ток статора;

Род тока;

Номинальное напряжение;

Расчетную продолжительность включения.

Данные двигателя моста и тележки

Переменный ток

Р н м = 8 кВт

Р н т = 2,5 кВт

По справочнику Яуре А.Г. «Крановый электропривод» выбираем силовые кулачковые контроллеры

раб. полож. 6/6

напряжение 220В

мощность испол двиг. 10кВт

2. Выбор контроллера для подъемного механизма

Выбираем магнитный контроллер постоянного тока типа ПС или ДПС,предназначенный для управления электроприводами механизмов подъема

Для механизма подъема с Рном =22 кВт по справочнику выбираем контроллер типа ПС

Ток включения 450А

Напряжение 220В

Мощ. испол двиг. 30кВт

      Крановые конечные выключатели

Конечные выключатели

Крановые конечные выключатели служат для предотвращения перехода механизмами предельно допустимых положений (ограничение подъема грузозахватывающего устройства или хода моста и тележки), а также блокировка открывания люков и двери кабины.

1. Конечные выключатели выбираются с учетом скорости перемещения механизмов.

Произведем выбор конечных выключателей

Для механизмов перемещения - КУ 701 рычажной с самовозратом

Для подъема - КУ 703 с самовозратом от груза

Скорость механизма 0,03-2 м/с

Степеньзащиты IP44

Масса 2,7 кг

Скорость механизма 0,01-1 м/с

Степеньзащиты IP44

Масса 10,3 кг

9.3 Максимальные реле типа РЭ0401 для зашиты цепей крановых

1. Расчет максимального реле по формуле 48

Iср=2,5·Iн (48)

Для моста Iср=2,5·44=110 А

Для тележки Iср=2,5·14,6=36,5 А

Для подъема Iср=2,5·116=290 А

Для группы Iмах =241,2

Iср=2,5·241,2=603 А

Для механизмов перемещения,подъема выбираем реле типа РЭ0401

РелеРЭ0401

Электромагнит

Ток катушки

Пределы регулирования тока

Выводы катушки

1.мост ТД.304.096-12

2.Тележка 2ТД.304.096-18

3.Подъем 2ТД.304.096-8

4. группа 2ТД.304.096-4

9.4 Резисторы

Применяются для пуска,регулирования угловой скорости и торможения

Резисторы выбирают по суммарному значению пускового сопротивления с учетом значений секций

1. Производим выбор резисторов:

Для моста Rn=220/44=5 Ом

Для тележки Rn=220/14,6=15 Ом

Для подъема Rn=220/116=1,89 Ом

Контроллер КВ101

Номинальное сопротивление Rn=5 Ом

Мощность двигателя Рн=8кВт

Тип блока БК12

Рублика блока 02

Количество блоков 1

2. Тележка

Контроллер КВ101 Номинальное сопротивление Rn=15 Ом

Мощность двигателя Рн=2,5 кВт

Тип блока БК12

Рублика блока 03

Количество блоков 1

Контроллер ПС 160

Номинальное сопротивление Rn=1,89 Ом

Мощность двигателя Рн=22кВт

Тип блока БК6

Рублика блока 07

Количество блоков 1

9.5 Защитная панель

Крановая защитная панель осуществляет следующие виды защиты:

Электроснабжении, осуществляется с помощью нулевых контактов и контактора.

Защита от токов короткого замыкания и больших свыше 250% перегрузок.

Концевая защита, обеспечивающая отклонения при достижении механизмов крана крайних положений, осуществляется с помощью конечных выключателей.

Блокировка предотвращение включения двигателей при открытой двери кабины и открытом люке.

Аварийное отключение.

Отключение при снижении напряжения в сети свыше 15 %.

9.6 Предохранители

Для крановых защитных панелей с I max = 6А выбирают плавкие предохранители по условию I вст ≥ I max

По I max выбираются плавкие предохранители типа ПР-2-15, I вст = 6А

Конструкция защитной панели представляет собой металлический шкаф с установленной в нем аппаратурой

Размещается защитная панель в кабине крана

Выбираем защитную панель типа ППЗК для трех двигателей постоянного тока

Основная аппаратура ППЗК

Вводной рубильник QW

Контактор линейный КМ

Предохранители FU

Контакт люка и двери SQ

Контакты конечных выключателей SQ

Аварийный выключательA

Выбираем защитную панель ППЗБ 160

10. ТОКОПРОВОД К ДВИГАТЕЛЯМ КРАНА, ВЫБОР ТРОЛЛЕЕВ И ПРОВЕРКА ИХ НА ДОПУСТИМУЮ ПОТЕРЮ НАПРЯЖЕНИЯ.

Токопровод к двигателям крана осуществляется от общей сети цеховой подстанции.

Так как механизмы крана вместе с двигателями и аппаратурой перемещаются, то токопровод к ним осуществляется при помощи контактных проводов троллеев или гибкими медными кабелями.

От цеховой трансформаторной подстанции, через линейный автомат, кабелем проводится питание к основной сборке, а от нее подается питание на главные троллеи, которые устанавливаются на изоляторах, вдоль подкранового пути, на безопасной высоте со стороны противоположной кабине.

Токосъем осуществляется так: по ребрам уголков троллеев, сделанных из профилированной стали, скользят чугунные башмаки, которые крепятся на изоляторах. Молнии токосъема соединены с мостом.

При помощи медных многошпалочных перемычек башмаки соединены зажимами к линейной коробке находящиеся на мосту, а от них провода и кабели идут к защитной панели.

Троллеи находятся вдоль пролета моста, а токосъемник расположен на тележке.

Выбор сечений троллеев осуществляется по длительному току и проверяется на допустимую потерю напряжения.

Для троллеев применяется профилированная сталь с профилем 5, 6, 7,5:

5× 40× 40; 6× 63× 63; 7,5× 80× 80.

10.1. Главные троллеи

1. Определяем нагрузку крана по формуле 49

Рр=Кн ·Р∑+С ·Р3 (49)

Р∑-сумма мощностей всех двигателей =Р3

Кн –коэффициент использования=0,12

Рр=0,12 ·32,5+0,3 ·32,5=13650Вт

2. Расчетный ток определяем по формуле 50

Ip=Pp/Un ·ηср=13650/220 ·0,82=75,6 А (50)

ηср = ηм+ ηт+ ηп/3=0,84+0,85+0,79/3=0,82

3. Размер троллеев 50 ·50 ·5 мм

R0=0,27Ом/0,001=0,00027Ом

4. Проверяем на потерю напряжения по формуле 51

U=200 ·Iмах ·lR0/Un≤3-4% (51)

При этом: Iмах=К · Iн1+ Iн2=1,7 ·116+44=241,2 А

Принимаем:

U=200 ·241,2 ·240,00027/220=1,42%≤3-4%

Из произведенных расчетов троллеи выбираем 50 ·50 ·5 мм

Проводку выполняем проводом ПРТО-500

Ip= Iн=44 А S=10мм²

2. Тележка

Ip= Iн=14,6 А S=2,5мм²

Ip= Iн=116 А S=50мм²

p=1,7 ·116+14,6+44=255,8 А S=150мм²

11 РАСЧЕТ И ВЫБОР ТОРМОЗОВ.

Крановый механизм должен иметь устройство для его остановки в данном положении или ограничения пути торможения при побеге после отключения приводного электродвигателя. Такими устройствами называются тормоза, обеспечивающие остановку механизма крана за счет сил трения между вращающимся шкивом или диском и неподвижной тормозной поверхностью, связанной с механизмом.

11.1 Расчет тормозов для моста

1. Определяем расчет тормозного усилия, необходимое для остановки механизма по формуле 52

М тр - тормозной момент, Н·м.

Торм момент 125

11.2. Для механизма тележки

где, ПВ р – расчетная продолжительность включения, %;

ПВ ст – стандартная продолжительность включения, %;

М тр - тормозной момент, Н·м.

Торм момент 16 Н ·м

11.3. для механизма подъема по формуле 56

Мт≥Кз · М тр (56)

При этом: Кз=1,75

Определяем расчет тормозного момента, необходимое для остановки механизма по формуле 57

М тр. =94 ·Q ·V ·η/n=94 ·10000 ·0.2 ·0.79/635=233.8Н·м (57)

Мт≥1.75 ·233.8

где, ПВ р – расчетная продолжительность включения, %;

ПВ ст – стандартная продолжительность включения, %;

М тр - тормозной момент, Н·м.

Выбираем тормоза 420≤429,6

Торм момент 420 Н ·м

12 ОПИСАНИЕ ПРИНЦИПИАЛЬНОЙ СХЕМЫ ЭЛЕКТРООБОРУДОВАНИЯ КРАНА

Мостовой кран управляется тремя двигателями. Двигатель моста передвигает мост по рельсам цеха. На мосту по рельсам движется тележка, на тележке находится грузоподъемный механизм.

На всех трех механизмах выбраны двигатели постоянного тока параллельного возбуждения.

Для механизма моста,скорость перемещения 1,25м/с-Д31,Рном=8кВт;для механизма тележки,скорость перемещения 0,6 м/с-Д 12,Рном=2,5 кВт;для механизма подъема,скорость перемещения 0,2 м/с –Д806,Рном=22 кВт

Уровень защиты IP44

Принципиальная схема включает в себя четыре скомпонованные схемы. Схема защитной панели, к которой подключаются три двигателя.

Для управления электроприводами мостового крана используют силовые кулачковые контролеры,для механизмов передвижения и магнитный контроллера –для механизма подъема. Для ограничения пускового тока,регулирования угловой скорости и торможения двигателей применяют резисторы.

Для предотвращения перехода механизмами предельно допустимых положений используют конечные выключатели серии КУ701 и КУ703

Для защиты от токовых нагрузок и токов короткого замыкания,для обеспечения аварийного отключения применяют защитную панель типа ППЗК

Токопровод осуществляется при помощи контактных проводов –троллеев размерами 50·50·5 мм

В механизме используются электромагниты постоянного тока типа МП101,МП301,МП201 с тормозами ТКП100,ТКП200,ТКП300

13 ВОПРОСЫ ЭКСПЛУАТАЦИИ И МОНТАЖА ЭЛЕКТРО-ОБОРУДОВАНИЯ КРАНА

Аппаратуру и электропроводку кабины крана монтируют в мас­терских. Затем кабину доставляют на строительную площадку, ус­танавливают на кран и подключают к электрической схеме крана. Пускорегулирующие сопротивления, собираемые в виде ящиков сопротив­ления, промышленность выпускает в открытом и защищенном испол­нениях. На кранах их располагают или в кабине управления или на мосту, а в помещениях щитов станций управления - вверху у стены с таким расчетом, чтобы сократить по возможности длину соединитель­ных проводов и обеспечить отвод тепла, выделяемого ими при работе, не ухудшая этим условий работы проводов и другой аппаратуры. Ящи­ки сопротивлений устанавливают так, чтобы их элементы располага­лись «на ребро». Ящики сопротивлений в количестве не более трех мо­гут быть укреплены непосредственно один над другим. При большем количестве (не более шести) для них изготовляют металлический кар­кас в виде этажерки. При установке следят за тем, чтобы выводы от элементов сопротивлений находились с одной стороны ящиков со­противлений. Все соединения между ящиками выполняют голыми стальными или медными проводами и шинами. Ошиновку делают максимально короткой.

Тормозные электромагниты устанавливают непосредственно у шки­ва электродвигателя (на место, предусмотренное для этой цели при изготовлении агрегата на заводе) и закрепляют болтами. При установ­ке обеспечивают строго вертикальное положение электромагнита и оди­наковый зазор между тормозными колодками и барабаном по всей длине колодок. Перекос недопустим. Не должно быть также заеданий и перекосов якоря электромагнита, так как они влекут за собой воз­можные перегревы и даже сгорание его обмотки. Сопряжение якоря с тормозом делают так, чтобы обеспечить плавный спуск и подъем тор­мозных колодок.

В чертежах, присылаемых заводами-изготовителями, обычно ука­зывают место в кабине, где должны находиться барабанные или кулач­ковые контроллеры.

Для устранения вибраций частей контроллера и предохранения проводов от поломок и ослабления контактных сое­динений контроллеры следует прочно крепить или к полу, или к конст­рукциям. Установленные контроллеры проверяют по отвесу и уровню. Для удобства обслуживания высота штурвала контроллеров над уров­нем пола кабины - не более 1150 мм.

Конечные выключатели передвижения мостовых кранов размещают на специальных конструкциях по бокам поперечной фермы крана, а вы­ключатели, передвижения тележки - на концах ее направляющих. Ограничительные рейки или выключающие упоры относительно от­ключающего рычага конечного выключателя должны фиксироваться так, чтобы их оси совпадали. Длину ограничительной рейки и место установки отключающего упора определяют в зависимости от длины пути торможения при максимальной скорости движения подвижной части механизма. Электрооборудование кранов в настоящее время монтируется индустриальным методом на заводах-изготовителях или и мастерских электромонтажных заготовок.

14 ВОПРОСЫ ТЕХНИКИ БЕЗОПАСНОСТИ ПРИ ОБСЛУЖИВАНИИ И МОНТАЖЕ ЭЛЕКТРООБОРУДОВАНИЯ КРАНА.

Персонал, обслуживающий электрооборудование грузоподъемных устройств, должен соблюдать осторожность и строго выполнять все требования техники безопасности (пользоваться проверенными зашитыми диэлектрическими перчатками и галошами, изолирующими подставками и ковриками, инструментом, снабженным изолирующими ручками).

Пред тем как приступить к измерению величин сопротивления изоляции, проверяемую часть электроустановки отключают. Отсутствие напряжения на отключенных частях электроустановки про­веряют индикатором напряжения.

Выполнение работ на частях грузоподъемных устройств, находя­щихся на ходу, представляет собой большую опасность. К числу опе­раций, которые при работе грузоподъемных устройств категориче­ски запрещены, относятся закрепление оборудования и аппаратов, регулировочные работы, зачистка коллекторов и контактных колец.

Ремонт электрооборудования грузоподъемных устройств по усло­виям безопасности выполняют два человека, один из них - руководи­тель, имеющий необходимый опыт и квалификацию и отвечающий за безопасную организацию работ. Без разрешения ответственного лица запрещается подача питания к грузоподъемному устройству для про­верки и регулировки механизмов после окончания ремонтных работ. Разрешение ответственного лица требуется также для ввода в эксплу­атацию отремонтированного крана.

Ремонтируют электрические краны в специально предусмотренных для этой цели «ремонтных загонах». Для обеспечения безопасности про­изводства работ крановые троллеи, находящиеся в пределах «ремонт­ных загонов», на время ремонта разъединяют с остальной частью трол­леев и заземляют. Перед началом ремонтных работ проверяют положе­ние разъединяющего рубильника и надежность заземления крановых троллеев и в «ремонтных загонах».

Техника безопасности при монтаже электрооборудования подъемно-транспортных устройств. Особенности монтажа крановых устано­вок (работа на высоте при наличии больших масс металла и связанные с этим неудобства ее выполнения) требуют соблюдения соответствующих мер безопасности. Все места, откуда возможно падение людей, должны быть ограждены. Вход на кран допускается только по специально устроенной для этого лестнице с перилами. Инструменты, материалы и оборудование поднимать на кран следует только при помощи пеньковой веревки.

Зону под монтируемым краном ограждают и вывешивают плакат: "Проход запрещен! Вверху работают». Работа с электроинструментом допускается лишь в резиновых перчатках и галошах, при этом инстру­мент должен быть заземлен. Электроэнергию к электроинструменту подводят по шланговому проводу с исправной изоляцией. В местах, где можно упасть, работают в предохранительном поясе. Электросва­рочные провода должны иметь надежную изоляцию, а сварщик - работать в резиновых галошах или сапогах.

Список использованных источников

1 Е. Н. Зимин, В. И. Преображенский, И. И. Чувашов, Электрооборудование промышленных предприятий и установок. – М.: Энергоиздат, 1999.

2 Алиев В. П. Справочник по электротехнике и электрооборудованию (5-е изд., исправленное) / Серия «Справочники».- Ростов на Дону: Феникс, 1988.

3 А. Г. Яуре, Е. М. Певзнер. Крановый электропривод: Справочник - М.: Энергоатомиздат, 1988.

Учитываться при разработке конструкции крана . Трудоемкость монтажа мостовых кранов , выполняемого по ти­повой технологии... .4), обеспечивающих Рис 4 Габариты приближения мостового крана безопасную эксплуатацию кранов . Расстояния от выступающих частей...

  • Проектирование основных узлов тележки мостового крана

    Курсовая работа >>

    На передовых достижениях техники. 1. Мостовые краны 1.1 Общие сведения Мостовые краны применяют в цехах ремонтных предприятий... хордовые, радиальные и поворотные. Поступательно перемещающимися мостовые краны имеют однобалочные и двухблочные мосты с нормальной...

  • Проект металлических конструкций мостового крана

    Курсовая работа >> Промышленность, производство

    ... кранов : мостовые , козловые, башенные, консольные, краны -штабелеры, портальные, плавучие, судовые электрогидравлические и др. Мостовой кран ... проектирование мостовых электрических кранов , ОТИ, ВНИИПТМаш, 1960 Шабашов А.П., Лысяков А.Г. Мостовые краны общего...

  • Обоснование проекта монтажа и эксплуатации электрооборудования мостового крана

    Курсовая работа >> Экономика

    1 - 2 - Получение и транспортировка оборудования мостового крана ; 2 - 3 - Распаковка электрооборудования мостового крана ; 3 - 4 - Разбивка кабельных трасс; ... – Сетевой график монтажа мостового крана . Рассчитаем продолжительность работы монтажного...

  • Электрические схемы мостовых кранов


    Электрические схемы бывают принципиальные или элементные, монтажные или маркированные. Принципиальные схемы отражают взаимодействие элементов электрооборудования, указывают последовательность пппупжирния тпкя по силовым цепям и аппаратам

    управления. Пользоваться принципиальными схемами удобно при ремонте и наладке. Аппаратура в них просто и четко разбита на отдельные самостоятельные цепи, и они легко запоминаются. Электрические цепи на принципиальных схемах подразделяются на силовые, изображаемые толстыми линиями, и цепи управления, выполненные тонкими линиями. На монтажных или маркированных схемах в отличие от принципиальных изображают электрическую проводку крана и взаимное расположение электрооборудования.

    Электрическая защита. В качестве электрической защиты, как уже отмечалось выше, применяются защитные панели ПЗКБ-160 и ПЗКН-150. Некоторые заводы выполняют защитные панели собственной сборки. Независимо от этого каждая такая сборка представляет собой укомплектованную панель, на которой смонтированы: трехполюсный рубильник, предохранители цепи управления, трехполюсный контактор, реле максимального тока, контактные зажимы цепей управления и линейных проводов, пусковая кнопка и трансформатор цепей управления.

    Рассмотрим электрическую схему защитной панели ПЗКБ-160 (рис. 36). Цепь управления показана тонкими линиями, силовая цепь - жирными линиями. Пояснение схемы силовой цепи будет дано ниже. В данный момент рассмотрим схему цепи управления без элементов, расположенных правее пунктирной линии, соединяющей точки.

    Из приведенной схемы видно, что подача напряжения к катушке контактора Л возможна после нажатия на кнопку KB, когда рукоятки всех контроллеров КП, КТ, КМ поставлены в нулевое положение, включен аварийный выключатель АВ, замкнуты контакт люка КЛ, контакт дверей кабины КД, включена ключ-марка КМ и замкнуты контакты максимального реле MP. После включения линейного контактора Л замыкаются его блок-контакты Л в цепи управления, шунтирующие кнопку КВ. При этом создается замкнутая цепь: провод Л1, катушка Л, контакты MP, КМ, КД, KЛ, АВ, КМ, КВМН, КВТН, КТ, КП, блок-контакт Л, провод Л2.

    При выводе контроллеров из нулевого положения в рабочее цепь не размыкается, так как ток проходит не через нулевые контакты контроллеров, а через цепь с блок-контактом Л, и катушка линейного контактора запитывается по параллельной цепи.

    Рис. 1. Электрическая схема защиты кранов.

    Вторая замкнутая цепь образуется при включении контакторов ВМ или НМ, что осуществляется контактами контроллера передвижения К11М или К9М. При этом в цепи размыкаются контакты взаимной блокировки НМ или ВМ, предохраняющие от одновременного включения этих контакторов.

    При срабатывании конечных выключателей механизма передвижения моста КВМН, КВМВ линейный контактор Л не отпадает, а отключается только контактор направления ВМ или НМ и механизм передвижения останавливается. Линейный контактор отключится при срабатывании любого другого концевого выключателя или прибора безопасности. В этом случае отключаются контакты Л в силовой цепи и механизмы обесточиваются. Для пуска рукоятки контроллеров необходимо снова поставить в нулевое положение и нажать на кнопку КВ.

    Реверсирование. Для реверсирования, т.е. изменения направления вращения двигателей, применяют контакторы или реверсивные магнитные пускатели. На рис. 37, а показана схема реверсивной контакторной панели, а на рис. 2 - схема реверсивного магнитного пускателя. Для реверсирования двигателей достаточно двух двухполюсных контакторов. При повороте рукоятки контроллера подается напряжение в цепь управления и включается катушка, которая замыкает верхнюю пару контактов линии 1-11 и 3-12. При этом двигатель вращается в направлении Вперед. При подаче напряжения в цепь управления, что соответствует повороту контроллера в противоположную сторону, включаются катушка Я и нижняя пара силовых контактов, замыкая линии 1-12 и 3-11. В этом случае двигатель вращается в направлении Назад.

    Рис. 2. Схема реверсирования. а - с помощью контакторной панели: б - с помощью магнитных пускателей.

    Реверсивный магнитный пускатель состоит из двух трехполюсных пускателей, имеющих взаимную механическую и электрическую блокировку. При замыкании контактов универсального переключателя VII включается катушка В пускателя и соответствующими силовыми контактами В замыкаются линии 1-12, 2-13, 3-11. Двигатель вращается в одну сторону. При включении катушки Н замыкаются линии 1-11, 2-13, 3-12, что вызывает изменение порядка чередования фаз электродвигателя, поэтому он вращается в противоположную сторону.

    Управление электроприводом. Как указывалось выше, для смягчения пусковых характеристик механизмов применяют пусковые резисторы.

    Пусковыми резисторами управляют: – прямым способом, при котором цепи сопротивлений подключаются непосредственно к зажимам контроллера, установленного в кабине крана; – дистанционным способом, когда цепи резисторов включаются контакторами магнитной панели, управляемой с помощью командоконтроллера, установленного в кабине.

    На рис. 3 приведена схема управления электроприводом крана прямым способом. На схеме показаны контроллер КМ типа ККТ-62А, два пусковых резистора ПС1 и ПС2 типа НФ-2А, два двигателя Ml и МЗ и два электрогидротолкателя тормоза М2, М4. На первой позиции контроллера обмотки роторов замыкаются на полный комплект сопротивлений, на второй позиции включаются контакты контроллера, часть резистора отключается. Двигатель переходит на более жесткую характеристику, его частота вращения возрастает и т. д. На пятой позиции контроллера все резисторы отключены, обмотки роторов замкнуты накоротко, двигатели работают на естественных характеристиках, где скорость достигает наибольшего значения.

    В качестве примера дистанционного способа регулирования пуска электродвигателя с фазным ротором на рис. 4 приведена электрическая схема управления механизма передвижения. Управляют пуском электродвигателя и регулируют частоту вращения в этом случае с помощью контроллера КК типа ККТ-61А. Однако здесь контроллер работает в цепи управления как командоконтроллер, а пускорегулирующие резисторы коммутируют с помощью магнитного контроллера. При включении рубильника В напряжение через катушки реле максимального тока РТ1 и РТ2 подается к неподвижным контактам контакторов К1 и К2. На нулевой позиции ком андоконтроллера КК втягивающая катушка промежуточного реле Р1 получает питание по цепи: провод 010, замкнутые контакты КК, УП1, РТ1, РТ2, УП1, провод 037. Реле Р1 замыкает свои контакты в цепях 020-023 и 025-036.

    Рис. 3. Схема управления электроприводом крана прямым способом.

    Рис. 4. Схема управления электроприводом дистанционным способом. а - силовая цепь; б - цепь управления.

    При установке рукоятки командоконтроллера КК на первую позицию положения Вперед замыкается контактор К1 - При этом включаются электродвигатели Ml, МЗ, М5 и М7 механизма передвижения и М2, М4, Мб, М8 гидротолкателей тормозов. При переводе командоконтроллера на вторую позицию питание получает катушка контактора Кб, который замыкает секции пусковых резисторов в цепях роторов двигателей передвижения. Дальнейший поворот рукоятки контроллера последовательно включает катушки контакторов К7, К8 и К9. На последней позиции все сопротивления зашунтированы, т.е. роторы электродвигателей замкнуты накоротко, поэтому двигатели работают на естественных характеристиках. При переводе рукоятки командоконтроллера КК в сторону Назад на первой позиции включается катушка контактора К2. В результате изменения порядка подключения фаз двигатели вращаются в обратную сторону.

    При срабатывании каждого из реле РТ1 и РТ2 на любой позиции контроллера размыкается размыкающий контакт одного из этих реле, катушка Р1 окажется обесточенной и разомкнет свои контакты в цепи катушек K1, К2. Силовая цепь окажется разомкнутой, кран остановится. Дальнейший пуск электропривода станет возможным только после возвращения рукоятки командоконтроллера в нулевое положение.

    Особенности управления магнитным контроллером типа ТСАЗ-160. У магнитных контроллеров ТСА и КС первое и второе положения контроллера служат для спуска с пониженной скоростью грузов выше 50% от номинального. При этом на первом положении спуска возможна работа только с номинальным грузом. Для спуска тяжелых грузов на первом и втором положениях необходимо включить педаль НП. Тогда в первом положении включается реле 1РУ, 2РУ. Включатся при нажатой педали и контактор противовключения П, контактор В, контактор пуска КП, контактор тормоза Т и реле блокировки РБ.

    При втором положении командоконтроллера контактор П противовключения отключается. На первом и втором положениях двигатель работает в режиме противовключения.

    Груз массой, меньшей 50% номинального, на первом и втором положениях командоконтроллера опускаться не будет. Его опускание возможно только в третьем положении командоконтроллера. В третьем положении командоконтроллера включаются контакторы Н и О. Это вызывает включение двигателя в режим однофазного торможения. Контакторы Я и О включают реле блокировки РБ, которое включает контактор Т - механизм растормаживается. Цепь контакторов В и КП разорвана блок-контактами Я и О. В этом же положении последовательно включаются контакторы 1У, 2У. Контактор 2У разрывает цепь реле 1РУ, которое в свою очередь включает с выдержкой времени контакторы ЗУ и 4У, т.е. заворачиваются пусковые резисторы.

    Рис. 5. Принципиальная схема электропривода подъема с магнитным контроллером ТСАЗ-160. а - силовая цепь; б - цепь управления; М двигатель; ТМ - тормозной магнит; Т - контактор тормозного магнита; КП- контактор пуска; В, Н- контакторы направления вращения двигателя; О - контактор однофазного торможения; П - контактор противовключения; 1У-4У- контакторы ускорения; MP - реле максимального тока; РБ - реле блокировочное; 1РУ, 2РУ - реле ускорения; КВВ, КВН - конечные выключатели; ВС - выпрямитель селеновый; R1-R2 - добавочные резисторы; НП - ножная педаль; Р - рубильник; 1П, 2П - предохранители.

    К атегория: - Электрическое оборудование

    Мостового типа. В 2000-е годы их выпуск в России сократился до 1000-1500 единиц техники.

    Несложное устройство мостового крана позволяет широко использовать г рузоп одъемные м ашины (ГПМ) этого типа на разномасштабных предприятиях — от маленьких автомастерских до больших металлургических комбинатов или ТЭЦ.

    Используются мостовые краны для того, чтобы поднимать и перемещать тяжелые грузы больших размеров во всех сферах промышленной деятельности человека.

    Технические характеристики мостовых кранов разрешают применять эту категорию ГПМ как для внутренней погрузки-разгрузки, так и для наружных работ в любых климатических условиях.

    Недостаток мостовых ГПМ — в их стационарности, а плюс — в том, что они могут использовать строительную высоту здания.

    Мостовые ГПМ делятся на 2 большие группы : общего назначения и специальные .

    Мостовые ОПИ (общепромышленного исполнения) оборудованы грузовым крюком.

    Специальные — оснащаются захватами, имеющими узкоспециализированное назначение: грейфер, магнит, захваты для контейнеров. Подъемники спец. назначения производят с поворотной тележкой или стрелой.

    В отдельную группу выделяют металлургические ГПМ, предназначенные только для данной отрасли промышленности. Оснащаются такие ГПМ спец. захватами: литейными, ковочными, для раздевания слитков и др.

    Два способа опирания на крановый путь

    У двутавровой пролетной балки есть верхний и нижний горизонтальные пояса. На верхний размещают опорные, а под нижний крепятся подвесные:

    • Опорные устанавливаются колесами на рельсы сверху. Грузоподъемность опорных ГПМ — максимальна (до 500т), но постройка подкрановой эстакады или опор требует финансовых затрат.
    • Подвесные подцепляются к нижним полкам кранового пути. Этот вид опирания прост в монтаже и имеет невысокую стоимость. Небольшая грузоподъемность (до 8т) окупается малой высотой конструкции, из-за чего размер рабочей зоны больше, чем у опорных кранов.

      Подвесные краны можно установить на часть цеха. Есть возможность стыковать краны (стыковой замок) и перемещать тележки с одного крана на другой.

    Конструкции устройства бывают разными. Они могут двигаться поступательно или совершать обороты вокруг вертикальной оси (хордовые, радиальные и поворотные) ГПМ.

    Конструкция мостового крана

    По количеству главных балок конструкция ГПМ бывает:

    • однобалочная . Используется на небольших производствах, может быть подвесным или опорным. Г/п <= 10 т.
    • Двухбалочная. Конструкция выполняется только в опорном варианте, т.к. их грузоподъемность > 8 т.

      Использование — в больших производственных цехах, в автомобильной, металлургической промышленности. Длина пролета — до 60м. Грузовая тележка может иметь вспомогательный грузоподъемный механизм помимо основного.

    Тип привода мостового ГПМ

    Привод механизмов у мостовых ГПМ может быть ручным или электрическим.

    • Ручной привод . У этого мостового крана механизмом передвижения служат червячные тали.

      Используют ручные ГПМ для подъема относительно небольших грузов, при производстве вспомогательных или ремонтных работ.

    • Электропривод . Электрические тельферы служат в качестве устройств подъема и перемещения грузов. Мост ГПМ движется тоже с помощью электродвигателей, они передают вращение ходовым колесам либо через редукторы, либо через редуктор и трансмиссию.

    Из чего состоит мостовой кран?

    Общее устройство мостового крана — это одно- или двухбалочный мост и грузовая тележка, которая по нему перемещается.

    На мосту и на тележке размещается электрооборудование и основные узлы и механизмы.

    Тормозная система

    Стандартная система торможения для мостовых ГПМ — колодочная или диско-колодочная.

    Если скорость тележки ≤32 м/мин, механизмы передвижения можно не оборудовать тормозами. В этих условиях ГПМ сможет затормозить самостоятельно, не превысив длину тормозного пути.

    Функционально тормозные устройства кранов бывают стопорными — для остановки устройства — и спускными — замедляющими спуск.

    Тормоза могут быть открытого или закрытого типов. Подъемные механизмы кранов оснащаются закрытыми тормозами — в нормальном положении механизмы заторможены, тормоз снимается только при запуске двигателя.

    Механизмы подъема кранов, перемещающих опасные грузы: расплавленный металл, взрывчатые, ядовитые вещества, кислоты, имеют 2 тормоза, действующие автономно.

    Тормоза закрытого типа используют в ГПМ потому, что они более долговечны, чем открытые и их поломку можно легко заметить.

    Открытые тормоза в некоторых случаях монтируют дополнительно к закрытым (как вспомогательные) — для увеличения скорости и точности размещения грузов.

    Подъемные механизмы

    Механизм подъема и спуска груза тоже размещен на крановой тележке.

    Состоит из приводного электродвигателя, трансмиссионных валов, горизонтального редуктора и грузовых тросов с барабаном для намотки.

    Для работ с грузами >80 т применяется доп. редуктор мостового крана или понижающая зубчатая передача. Чтобы повысить тяговое усилие используют полиспаст (чаще всего сдвоенный кратный).

    Редуктор мостового крана, его назначение и устройство

    Функционально цилиндрические крановые редукторы можно разделить на:

    • редукторы подъемных механизмов;
    • редукторы движения тележек;
    • редукторы движения мостов.

    Редуктор может иметь 2 типа исполнения: развернутое и планетарное .

    Редукторы развернутого типа, оснащенные цилиндрическими колесами более популярны. Ремонт и обслуживание механизмов этой конструкции проще и дешевле.

    Подкрановые пути мостовых кранов

    При устройстве кранового пути в качестве крановых и тележечных рельсов используют ж/д рельсы Р18, Р24, Р38 (узкоколейные) и Р43, Р50 и Р65 (для широкой колеи).

    Также используют спец.крановые рельсы КР50, КР70, КР80, КРЮО, КР120, или же стальные направляющие квадратного сечения с закругленными краями (для механизмов г/п ≥ 20т).

    В качестве крановых путей для подвесного типа ГПМ применяют двутавровые балки.

    Крепления рельсов к балкам должны исключать смещение рельсов и должны позволять быструю замену изношенных рельсов. Их концы соединяют двусторонними накладками и болтами или сваривают.

    Электрообрудование

    К электрике мостовых ГПМ предъявляются особые, повышенные требования, что обусловлено напряженными режимами работы.

    За 1 час может быть произведено сотни включений, выключений и перегрузок, связанных с разгоном, торможением устройства в целом или тележки.

    Движение моста и крановой тележки, подъем и перемещение груза осуществляется основным электрооборудованием:

    • электродвигатели . Устанавливаются 3 (4) двигателя, 2 из них размещены на тележке для подъема/спуска груза и движения тележки по балке моста, и 1 (2) двигателя перемещает балку крана по рельсам. В мостовых кранах для ОПИ используют прочные асинхронные электродвигатели, предназначенные для частых перегрузок и пусков серий МТ или МТК (для ненапряженной работы), трехфазного тока;
    • контроллеры , реле управления, магнитные пускатели и другая аппаратура для того, чтобы управлять электродвигателями;
    • электромагниты , толкатели и прочие устройства, задействованные в работе стопорных тормозов;
    • ограничители грузоподъемности и прочие средства механической защиты.

    Прожекторы, приборы рабочего и ремонтного освещения, обогрева, звуковая сигнализации, измерительная аппаратура — все это является вспомогательным электрооборудованием.

    Подводится электропитание 2-мя способами: троллейными линиям или гирляндными кабельными системами:

    1. Троллейная линия — применяется в ГПМ большой грузоподъемности.

    Троллейная шина должна размещаться на высоте ≥3,5 м от пола и не меньше 2,5 метров до настила моста.

    1. Кабельная система. Гибкий эл.кабель, который подвешивается на специальные кабеленесущие каретки. Гирляндная система дешевле, ее монтаж и эксплуатация — легче, но она менее надежна.

    Для перемещения балки моста применяется троллейная линия, а для крановой тележки — кабельная система.

    Устройство крановой тележки мостового крана

    Грузовая тележка производит подъем, спуск и перемещение груза вдоль моста.

    На жесткой стальной раме с ведущими и ведомыми колесами установлены многочисленные крановые узлы .

    Это приводы, электродвигатели подъемных механизмов (основного и вспомогательного), токосъемник, блокираторы высоты подъема.

    Аварийную остановку тележки при поломке тормозной системы обеспечивают буфера.

    Консольную тележку используют для однобалочных устройств. В двухбалочных применяют тележки, которые могут двигаться по обоим поясам балок (нижнему и верхнему).

    Схема управления мостовым краном

    Управляется ГПМ из подвесной кабины или с проводного (беспроводного) пульта, место расположения оператора — на полу цеха (земле) или вне рабочей площадки.

    Монтаж мостового крана

    Мостовой ГПМ требует доработки рабочей площадки - нужно проложить крановой путь.

    Рельсовый путь может быть смонтирован на специальной крановой эстакаде, или для его постройки используется пол, колонны и опоры здания.

    Есть 3 варианта монтажа :

    • Поэлементный (пошаговый ). Сборка крановых узлов происходит наверху на подкрановых путях.
    • Крупноблочный так называемая, укрупненная сборка. На высоту для монтажа поднимаются крупные фрагменты (механизмы, электрооборудование, узлы) крана, заранее собранные внизу.
    • Полноблочный полная сборка моста на полу. Конструкция поднимается целиком и монтируется на подкрановых путях. Для данного метода необходимо использование мощной техники.

    Фото разных моделей

    Вот так выглядят эти механизмы за работой:


    Вконтакте

    Министерство образования и науки РФ

    Федеральное государственное образовательное учреждение

    среднего профессионального образования

    «Череповецкий лесомеханический техникум им. В.П. Чкалова»

    Специальность 140613: "Техническая эксплуатация и обслуживание электрического и электромеханического оборудования"

    Курсовой проект

    по дисциплине « Электрическое и электромеханическое оборудование»

    Тема: «Проект электрооборудования мостового крана »

    Введение

    Общая часть

    1 История развития электропривода

    2 Характеристика мостовых кранов

    Расчетная часть

    1 Расчет мощности приводного механизма

    2 Выбор схемы управления

    3 Выбор аппаратуры управления и защиты

    4 Разработка схемы соединений

    5 Устройство и назначение тормозного устройства

    Техника безопасности при обслуживании мостовых кранов

    Заключение

    Литература

    1. Общая часть

    .1 История развития электропривода

    Научно-технический прогресс, автоматизация и комплексная механизация технологических и производственных процессов определяют постоянное совершенствование и развитие современного ЭП. В первую очередь это относится к все более широкому внедрению автоматизированных ЭП с использованием разнообразных силовых полупроводниковых преобразователей и микропроцессорных средств управления. Постоянно появляются и новые типы электрических машин и аппаратов, датчиков координат переменных и других компонент, применяемых в ЭП.

    Расширение и усложнение выполняемых функций ЭП, использование в них новых элементов и устройств, все более широкое включение ЭП в системы автоматизации технологических процессов требуют высокого уровня подготовки специалистов, занимающихся их проектированием, монтажом, наладкой и эксплуатацией.

    Историю ЭП обычно начинают отсчитывать с разработки русским академиком Б. С. Якоби первого двигателя постоянного тока вращательного движения. Установка этого двигателя на небольшой катер, который в 1838 году совершил испытательные рейсы по Неве, является первым примером реализации ЭП. В дальнейшем ЭП стали применять, например, для наведения артиллерийской установки, перемещения электродов дуговой лампы, привода швейной машинки. Однако из-за отсутствия экономичных источников электроэнергии постоянного тока ЭП долгое время не находил широкого применения и основным являлся тепловой привод. Не изменило кардинально этого положения и создание в 1870 году промышленного электрического генератора постоянного тока, а также появление однофазной системы переменного тока.

    Толчком к развитию ЭП явилась разработка в 1889 году М. О. Доливо-добровольского системы трехфазного тока и появление трехфазного асинхронного электродвигателя, что создало технические и экономические предпосылки для широкого использования электрической энергии, а значит, и ЭП.

    Первой научной работой по теории электропривода явилась опубликованная в 1880 году в журнале «Электричество» статья русского инженера Д. А. Лачинова «Электромеханическая работа», в которой на научной основе были показаны преимущества электрического распределения механической энергии. В современном промышленном и сельскохозяйственном производстве, на транспорте, в строительстве, в быту применяются разнообразные технологические процессы, для реализации которых человеком созданы тысячи различных машин и механизмов.

    Электрификация нашей страны и широкое применение в народном хозяйстве электроприводов началась после принятия и реализации государственного плана электрификации России - плана ГОЭЛРО, который предусматривает широкое строительство новых и реконструкцию старых электростанций, строительство новых линий электропередач, развитие электротехнической промышленности.

    Дальнейшее развитие электрификации и автоматизации технологических процессов, создание высокопроизводительных машин, механизмов и технологических комплексов во многом определяется развитием электрического привода.

    Одновременно происходило дальнейшее развитие и теории электропривода. Впервые как самостоятельная дисциплина теория электропривода представлена в книге С. А. Ринкевича «Электрическое распределение механической энергии», вышедшей в 1925 году.

    Возможности использования современных ЭП продолжают постоянно расширяться за счет достижений в смежных областях науки и техники - электромашиностроение и электроаппаратостроение, электронике и вычислительной технике, автоматике и механике. Такое широкое применение ЭП объясняется целым рядом его преимуществ по сравнению с другими видами приводов: использование электрической энергии, распределение и преобразование её в другие виды энергии, разнообразие конструктивного исполнения, что позволяет рационально соединять привод с исполнительным органом рабочей машины.

    К основным направлениям развития современного ЭП относятся:

    ─ Разработка и выпуск комплектных регулируемых ЭП с использованием современных преобразователей и микропроцессорного управления;

    ─ Повышение эксплуатационной надежности, унификация и улучшение энергетических показателей ЭП;

    ─ Расширение области применения регулируемого асинхронного ЭП и использование ЭП с новыми типами двигателей, а именно линейными, шаговыми, вентильными, вибрационными, повышенного быстродействия, магнитогидродинамическими и другие…

    ─ Развитие научно-исследовательских работ по созданию математических моделей и алгоритмов технологических процессов. А также машинных средств проектирования ЭП;

    ─ Подготовка инженерно-технических и научных кадров, способных проектировать, создавать и эксплуатировать современный автоматизированный электропривод.

    Решение этих и ряда других проблем позволит существенно улучшить технико-экономические характеристики ЭП и создать тем самым базу для дальнейшего технического прогресса во всех отраслях промышленного производства, транспорта, сельского хозяйства и в быту.

    1.2 Характеристика мостовых кранов

    Мостовой кран - кран, у которого несущие элементы конструкции опираются непосредственно на крановый путь.

    Мостовой кран в ЦРГ установлен внутри производственного корпуса и предназначен для подъема, опускания и перемещения различных грузов при производстве монтажных, ремонтных и погрузочно-разгрузочных работ. Мостовыми краны называются по отличительной конструкции продольных (главных) и поперечных (концевых) балок, выполненных в виде моста; сваренные между собой продольные и поперечные балки передвигаются по рельсовому пути, уложенному на подкрановые балки, закрепленные на консолях колонн здания (цеха, корпуса) или эстакады открытой площадки.

    Металлические конструкции мостов выполняют двух- или однобалочными. Наибольшее применение нашли двух балочные мосты. Опорный мостовой кран передвигается по рельсам, уложенным на металлических или железобетонных подкрановых балках, опирающихся на колонны здания или открытую эстакаду. Подвесной мостовой кран передвигается по нижним полкам двутавровых балок, закрепленных под нижними поясами строительных ферм здания.

    К основным параметрам мостовых кранов относятся: грузоподъемность, пролет моста, высота подъема, скорость подъема, скорость передвижения крана, скорость передвижения грузовой тележки, масса крана.

    Электрооборудование мостовых кранов по назначению подразделяется на основное и вспомогательное. Основным является оборудование электропривода, вспомогательным - оборудование рабочего и ремонтного освещения, сигнализации, измерительной аппаратуры.

    К основному электрооборудованию мостовых кранов относятся:

    асинхронные электродвигатели трехфазного переменного тока;

    аппараты управления электродвигателями - контроллеры, командоконтроллеры, контакторы, магнитные пускатели, реле управления;

    аппараты регулирования частоты вращения электродвигателей - пускорегулирующие резисторы, тормозные машины;

    аппараты управления тормозами - тормозные электромагниты и электрогидравлические толкатели;

    аппараты электрической защиты - защитные панели, автоматические выключатели, реле максимального тока, реле минимального напряжения, тепловые реле, предохранители и другие аппараты, обеспечивающие максимальную и нулевую защиту электродвигателей;

    аппараты механической защиты - конечные выключатели и ограничители грузоподъемности, обеспечивающие защиту крана и его механизмов от перехода крайних положений и перегрузки;

    полупроводниковые выпрямители;

    аппараты и приборы, используемые для различных переключений и контроля

    Для привода механизмов на мостовых кранах в основном устанавливают асинхронные электродвигатели трехфазного переменного тока как с короткозамкнутым, так и с фазным ротором кранового исполнения. Эти электродвигатели отличаются повышенной перегрузочной способностью как в механическом, так и в электрическом отношении. Кратность максимального вращающего момента этих электродвигателей по отношению к номинальному при повторном кратковременном режиме с ПВ, равным 25%, составляет 2,5-3. Указанные электродвигатели изготавливают в закрытом исполнении, с внешним обдувом и с противосыростной изоляцией.

    Контроллеры на мостовых кранах предназначены для управления работой (пуска, остановки, регулирования частоты вращения, изменения направления вращения) электродвигателей.

    Применяют контроллеры силовые ККТ и магнитные дистанционного управления. Магнитные контроллеры предназначены в электрооборудовании мостовых кранов для управления электроприводом на расстоянии. Все переключения в них осуществляются при помощи контакторов. Магнитный контроллер обладает рядом преимуществ по сравнению с силовым контроллером. Магнитным контроллером любой мощности управляют с помощью малогабаритного командоконтроллера без применения значительного усилия машиниста (крановщика).

    Контакторы магнитных контроллеров более износоустойчивые, чем контакты кулачковых контроллеров, Применение магнитных контроллеров позволяет автоматизировать операции пуска и торможения двигателя, что упрощает управление приводом и предохраняет двигатель от перегрузок. В комплект магнитных контроллеров асинхронными двигателями трехфазного переменного тока с фазным ротором, входят командоконтроллер, контакторная панель и пускорегулирующие резисторы. В отличие от силового контроллера командоконтроллер) не имеет контактов, рассчитанных на прохождение больших токов. Взамен них применены контактные мостики.

    В электроприводе мостовых кранов применяют также трех полюсные контакторы для замыкания и размыкания силовых электрических цепей.

    Для пуска, остановки и реверсирования асинхронных электродвигателей трехфазного переменного тока с короткозамкнутым ротором, а также для замыкания и размыкания (коммутации электрических цепей) используются в электрооборудовании мостовых кранов магнитные пускатели. Такие пускатели автоматически отключают двигатели при понижении напряжения и не допускают самопроизвольного включения двигателя после восстановления напряжения.

    Электрооборудование мостовых кранов оснащено реле различного назначения и исполнения. В электрических схемах мостовых кранов встречаются реле: тепловое, максимального тока, времени, промежуточное, минимального тока, тепловое реле.

    В цепи ротора электродвигателей для их плавного разгона, торможения и регулирования, частоты вращения применяют резисторы. Их устанавливают также в цепях управления и сигнализации, где они выполняют функцию ограничения напряжения или тока.

    Для снятия силовых (замыкающих) пружин двух колодочных тормозов и растормаживания рабочих механизмов мостовых кранов применяют специальные тормозные электромагниты) и электрогидравлические толкатели.

    Понижение напряжения с 380 В до 24В или до 12В для питания осветительных переносных ламп осуществляется на мостовых кранах с помощью однофазных трансформаторов. Для питания электронагревателей кабины машиниста (крановщика), опускания груза в режиме динамического торможения на кранах устанавливают трехфазные трансформаторы, обеспечивающие понижение напряжения с 380В до 36В. На кране имеются также измерительные трансформаторы для подключения амперметров. Необходимый для потребления в электрооборудовании мостовых кранов постоянный ток получают путем преобразования переменного тока в постоянный через выпрямители.

    Среди применяемых на мостовых кранах видов электрооборудования особое место занимают конечные выключатели, непосредственно связанные с обеспечением безопасной работы кранов. На мостовых кранах применяют выключатели типов КУ, ВК, ВУ, ВПК.

    Для защиты электрооборудования и электрических сетей от больших токов предусмотрены плавкие предохранители. На мостовых кранах применяют трубчатые предохранители без наполнения ПР-2 и с наполнением ПН2, НПР, НПН.

    Предотвращение нарушения нормальных условий работы электрических цепей крана (перегрузка, короткое замыкание) производится с помощью автоматических выключателей.

    Кроме электрических аппаратов, для частой коммутации цепей электроприводов на мостовых кранах применяют различные конструкции рубильников и выключателей периодической коммутации цепей управления и силовых цепей.

    Выключатели периодической коммутации с ручным и ножным приводом используют соответственно для отключения линейного контактора и включения цепей управления. Выключатели с ручным приводом служат в качестве аварийных выключателей и имеют обозначение ВУ. Выключатели с ручным управлением применяют в ряде случаев в режиме командоконтроллеров.

    Для передачи электрической энергии применяются провода, кабели и шнуры. Изолированный провод имеет токопроводящие жилы, заключенные в изолированную оболочку (резиновую, винилитовую, полихлорвиниловую). Кабели обычно имеют защитную герметическую металлическую (алюминиевую, свинцовую), резиновую или винилитовую оболочку. Для монтажа электропроводки на мостовых кранах применяют исключительно провод с изоляцией. При этом для предохранения от механических повреждений провода прокладывают в отдельных газовых трубах, металлических рукавах или плетеной металлической оболочке. Кабели и провода разделяются: по роду изоляции - неизолированные и изолированные (при этом существует большое количество видов изоляции); по материалу проводящих жил - медные, алюминиевые; по форме и конструкции проводящей жилы - сплошные или многопроволочные, круглые жилы, секторные или сегментные жилы; по роду защитных оболочек - кабели, освинцованные, с голой свинцовой оболочкой, со свинцовой оболочкой и с броней из стальной ленты.

    Таблица 1. Технические характеристики мостового крана


    2. Расчетная часть

    2.1 Расчет мощности приводного механизма

    Мостовые краны оборудованы механизмами подъема, передвижения моста и передвижения тележки.

    Задачами выбора электродвигателей являются определение принципиальной возможности функционирования двигателя, обеспечение долговечности двигателя и удовлетворительных свойств пары механизм-двигатель, нахождение наиболее экономичного варианта.

    Исходные данные, необходимые для расчета и выбора электродвигателя грузоподъемного механизма:

    Грузоподъемность крана 35 т

    Масса крюка 1 т

    Высота подъема 25 м

    Скорость подъема 12 м/мин

    КПД механизма при нагрузке 0,8

    КПД механизма при холостом ходе 0,35

    Диаметр барабана лебедки 800 мм

    Передаточное число полиспаста 4

    Передаточное число редуктора 30

    Производительность 200т/час

    Напряжение переменное 380 В

    Определим статический момент при подъеме груза по формуле :

    где грузоподъемность, Н; -вес крюка, Н;

    Диаметр барабана, м;

    КПД механизма при нагрузке;

    i р - передаточное число редуктора;

    Число полиспаста.

    Определим статический момент при опускании груза(тормозной спуск) по формуле:

    (2)

    Определим статический момент при подъеме крюка без груза по формуле:

    (3)

    где -КПД механизма при х.х.

    Определим статический момент при опускании крюка без груза по формуле:

    (4)

    Определим средний эквивалентный момент по формуле :


    Определим частоту вращения двигателя:

    (6)

    где скорость подъема, м/мин.

    Определим среднюю эквивалентную мощность по формуле:

    (7)

    Определим число циклов за 1 час по формуле:

    где Q -производительность, т/час;

    G н - грузоподъемность, т.

    Определим продолжительность цикла:


    Определим время работы за одну операцию по формуле:

    где -высота подъема, м;

    Скорость подъема, м/сек

    Определим время работы за один цикл по формуле:


    Определим продолжительность включений по формуле:

    (13)


    Пересчитаем мощность двигателя при ПВр=83,3% на стандартную, при ПВст=60% по формуле:

    (14)


    Определим мощность электродвигателя с учетом коэффициента запаса по формуле:

    (15)

    где К з - коэффициент запаса (К з =1,05-1,1)

    Исходя из данных расчетов выбираем два электродвигателя, так как кран с двумя подъемами. Данные заносим в таблицу.

    Таблица 2. Технические данные двигателя

    Тип двигателя

    п ном, об/мин

    cos,%М мах, Нм




    (МТН7112-10-асинхронный двигатель краново-металлургический, работающий при повышенных температурах, Н-класс нагревостойкости, 7-габарит, 1-серия, 1-длина, 10-число полюсов)

    Проверяем выбранный двигатель на перегрузочную способность:


    где -максимальный момент выбранного двигателя, Нм;

    М мах - максимальный момент рассчитанного двигателя, Нм;

    М ном - номинальный момент


    Выбранный двигатель подходит.

    Построим нагрузочную диаграмму.

    Рисунок 1. Нагрузочная диаграмма

    2.2 Выбор схемы управления

    Схемы управления крановыми двигателями могут быть симметричными и несимметричными относительно нулевого положения силового контроллера или командоконтроллера. Симметричные схемы применяют для приводов механизмов передвижения, а в некоторых случаях и для приводов механизма подъёма. В таких случаях при одинаковом по номеру положениях рукоятки контроллера при движении в разные стороны двигатель работает на аналогичных характеристиках. Несимметричные схемы используют для приводов механизмов подъёма, когда при подъёме и спуске груза требуется, чтобы двигатель работал на различных характеристиках.

    Магнитные контроллеры применяются преимущественно для управления двигателями кранов с тяжелыми режимами работы.

    Обмотка статора двигателя подключается через реверсирующие двухполюсные контакторы КМ1 и КМ2. Резисторы в цепях ротора двигателя выводятся посредством контакторов КМ3-КМ7. Схема позволяет получить: автоматический пуск на естественную характеристику в функции независимых выдержек времени, создаваемых реле КН1-КН3, питание катушек которых производится через выпрямитель от защитной панели; работу на трёх промежуточных скоростях; торможением противовключением.

    В цепь якоря двигателя включены: обмотка возбуждения, катушка тормозного электромагнита и четыре ступени сопротивления, предназначенные для пуска, торможения и регулирования угловой скорости.

    Схема контроллера обеспечивает работу двигателя в двигательном режиме и в режиме противовключения.

    Защита силовой цепи и цепи управления достигается с помощью автоматических выключателей и предохранителей.

    Все параметры автоматов должны соответствовать их работе как в обычном, так и в аварийном режимах, а конструктивное исполнение - условиям размещения.

    Номинальный ток автомата должен быть не ниже тока продолжительного режима установки, а сам аппарат не должен отключатся при предусмотренных технологических перегрузках.

    2.3 Выбор аппаратуры управления и защиты

    электропривод мостовой кран тормоз

    Для обеспечения безаварийной работы мостовые краны снабжают приборами и устройствами безопасности: концевыми выключателями; буферными устройствами; ограничителями грузоподъемности или массоизмерительными устройствами, указывающими массу поднимаемого груза; блокировочными устройствами; устройствами, предотвращающими столкновение кранов, которые работают на одних крановых путях; приспособлениями для исключения выпадения строп из зева грузовых крюков; звуковой и световой сигнализацией и средствами коллективной защиты от поражения электрическим током; ключ маркой.

    Концевые выключатели применяют для автоматического отключения от электрической сети приводного электродвигателя механизма подъема груза при подходе крюковой подвески к главным балкам моста, а также при подходе к концевым упорам крана или грузовой тележки при номинальной скорости передвижения более 32 м/мин. После остановки механизма концевой выключатель не должен препятствовать движению механизма в обратном направлении.

    Буферные устройства предназначены для смягчения возможного удара мостового крана или его тележки об упоры, а также кранов один о другой. Буфер содержит упругий элемент, который поглощает кинетическую энергию поступательно движущихся масс крана или тележки в момент соударения.

    Ограничитель грузоподъемности служит для отключения приводного электродвигателя механизма подъема груза, если масса поднимаемого груза превышает паспортную грузоподъемность крана на 25%.

    Для определения массы транспортируемого груза краном применяют массоизмерительное устройство.

    Электрические и электромеханические устройства блокировки служат для повышения безопасности управления мостовым краном. К числу таких блокировок относятся: механическая блокировка вводного рубильника ключ маркой, электромеханическая блокировка двери кабины, потолочного люка, нулевая блокировка.

    Для выбора аппаратов защиты нахожу номинальный ток двигателей грузозахватного механизма по формуле:

    (16)

    где Р- мощность двигателей, Вт;

    U - напряжение, В;

    соs -коэффициент мощности.

    Выбираю автоматический выключатель.

    Все параметры автоматов должны соответствовать их работе как в обычном, так и в аварийном режимах, а конструктивное исполнение- условиям размещения.

    Номинальный ток автомата должен быть не ниже тока продолжительного режима установки, а сам аппарат не должен отключатся при предусмотренных технологических перегрузках.

    Защита установки от перегрузок по току будет обеспечена, если номинальный ток автомата с тепловым расцепителем будет равен или насколько больше номинального тока защищаемого объекта.

    Уставки тепловой и максимальной токовой защит электродвигателей должны соответствовать уровням соответствующих токов двигателей. Максимальная токовая защита не должна срабатывать при пуске двигателя, для чего ее ток уставки выбирается по соотношению .

    Защита от перегрузки (тепловая защита) считается эффективной при

    следующем соотношении ее тока уставки и номинального тока двигателя .

    Для двигателя

    Ток уставки электромагнитного расцепителя

    Для двигателя

    Данные автоматического выключателя заношу в таблицу.

    Таблица 3. Технические данные автоматического выключателя


    Выбираю предохранитель, для защиты от к.з.

    Таблица 4. Технические данные предохранителя


    Выбираю контакторы, по напряжению в силовой части схемы. Данные заношу в таблицу.

    Таблица 5. Технические данные контакторов


    Выбираю пакетные выключатели

    Они выбираются по роду и величине напряжения, току нагрузки, количеству переключений, которое они допускают по условиям механической и электрической износостойкости, а также конструктивному исполнению.

    Таблица 6. Технические данные пакетных выключателей


    Выбираю кулачковый контроллер серииККТ-60А для управления асинхронным двигателем с напряжением 380В. Он имеет до 12 силовых контактов на номинальные токи до 63А, а так же маломощные контакты для коммутации сетей управления.

    Цепь управления

    Принимаю ток цепи управления 10А.

    Выбираю командоконтроллер для коммутации нескольких маломощных электрических цепей.

    Таблица 7. Технические данные командоконтроллера


    Выбираю кнопки управления

    Таблица 8. Технические данные кнопок управления


    Выбираю магнитные пускатели, предназначенные для пуска, остановки и защиты асинхронных электродвигателей.

    Таблица 9. Технические данные магнитных пускателей


    Выбираем лампу накаливания

    Таблица 11. Технические данные ламп осветительных

    .4 Разработка схемы соединений
    Таблица 13. Разработка схемы соединений

    Наименование аппарата

    Расположение аппарата

    Условное обозначение

    Вводной выключатель SF

    В защитной панели

    Плавкие предохранители

    В защитной панели

    Конечный выключатель SQ1- SQ5

    В силовой цепи

    Кнопки SВ1-SВ6

    В кабине крановщика

    Электродвигатель М

    В силовой цепи

    Контактор КМ

    В защитной панели

    Контактор «вперёд» КМ3

    В защитной панели

    Контактор «назад» КМ4

    В защитной панели

    Автоматический выключатель QS

    В защитной панели

    .5 Устройство и назначение тормозного устройства

    В мостовых электрических кранах применяют колодочные и дискоколодочные тормоза. В колодочных тормозах тормозные колодки прижимаются к наружной поверхности тормозного шкива. В дискоколодочных тормозах тормозные колодки выполнены плоскими и прижимаются они к торцовым поверхностям диска. Тормоза мостовых кранов замкнутые, т.е. их колодки прижаты к тормозному шкиву или диску в нормальном состоянии, когда отключены приводной электродвигатель механизма и привод тормоза. Усилие замыкания тормоза (усилие прижатия колодок к шкиву или диску) создается постоянно действующей внешней силой предварительно сжатой замыкающей пружины. Эти тормоза размыкаются, освобождая механизмы крана, только при включении привода тормоза одновременно с включением приводного электродвигателя механизма. Крановые тормоза приводятся в действие автоматически при отключении приводного электродвигателя механизма. Тормоза механизмов мостовых кранов не создают сил сопротивления при работе механизма, а стопорят механизм только в конце движения при отключении от электрической сети приводного электродвигателя и удерживают механизм на месте при стоянке.

    Действие крановых тормозов основано на использовании сил трения, возникающих при прижатии неподвижных колодок к вращающемуся тормозному шкиву или диску. Значение создаваемой при этом силы трения зависит в основном от усилия прижатия колодок к тормозному шкиву и коэффициента трения между шкивом и колодками. Колодка прижимается к тормозному шкиву под действием усилия замыкающей пружины. Это усилие зависит от степени поджатая, т.е. осадки пружины, и от длины пружины в сжатом состоянии. Регулируя длину пружины в сжатом состоянии, можно увеличить или уменьшить усилие прижатия колодок к тормозному шкиву.

    Коэффициент трения зависит от свойств материалов, из которых изготовлены тормозные колодки и шкив, а также от состояния поверхности трения тормозного шкива - наличия смазочного материала, влаги, ржавчины, рисок и канавок. Для повышения стабильности коэффициента трения и увеличения срока службы тормоза тормозные шкивы подвергают термической обработке, чаще всего токами высокой частоты до заданной твердости. Тормозные колодки снабжают фрикционными накладками, изготовленными из смеси асбестовой ваты с различными каучуками или смолами. Такие накладки обладают стабильным и высоким значением коэффициента трения. Таким образом, при работе тормоза сила трения создается при прижатии фрикционных накладок к термообработанной поверхности трения тормозного шкива.

    При торможении кинетическая энергия движущегося механизма преобразуется в тепловую энергию нагрева поверхности тормоза. В тяжелом и весьма тяжелом режимах работы кранов температура поверхности трения тормоза может достигать 200°С и более. Одним из недостатков фрикционных накладок крановых колодочных тормозов является то, что при сильном нагреве коэффициент трения накладки по шкиву начинает уменьшаться. При этом пропорционально уменьшается сила трения и увеличивается путь торможения, что может привести к аварии крана. По этой причине нельзя использовать мостовой кран в режиме более тяжелом, чем режим, указанный в его паспорте. Фрикционные накладки быстро изнашиваются, если усилие их прижатия к тормозному шкиву превышает заданное значение.

    При работе тормоза в результате действия сил трения возникает тормозной момент. Тормозной момент зависит от силы трения и диаметра тормозного шкива. С увеличением диаметра шкива при одинаковых условиях прижатия колодок к шкиву и коэффициенте трения тормозной момент увеличивается. Поэтому на разных крановых механизмах установлены тормоза с разными диаметрами тормозных шкивов.

    В зависимости от скорости начала торможения, тормозного момента и массы крана или поднимаемого груза грузовая тележка, кран или груз при торможении будут проходить до полной остановки определенный путь, который называют тормозным путем.

    Электрогидравлический толкатель, являющийся приводом тормозов, состоит из корпуса, в который установлен цилиндр. Ниже цилиндра установлен насос с приводным электродвигателем. Электродвигатель асинхронный, трехфазный, фланцевого типа с короткозамкнутым ротором, мощностью 0,2 кВт. На валу электродвигателя установлены колесо насоса с крыльчаткой центробежного насоса. В конструкции крыльчатки применены прямые радиальные лопатки, которые обеспечивают нормальную работу толкателя независимо от направления вращения вала электродвигателя. Станина электродвигателя прикреплена болтами к корпусу электродвигателя. Места разъемов уплотняются кольцами из маслостойкой резины, от протекания масла по штоку также предусмотрено уплотнение. Масло в электродвигатель заливают через отверстие, закрываемое пробкой, а сливают через отверстие, расположенное внизу станины. Внутренняя полость толкателя наполняется трансформаторным маслом, после этого для удаления воздуха необходимо закрыть пробку и выполнить пятикратное включение толкателя под нагрузкой на шток 100-250 Н. Затем масло доливают до тех пор, пока оно не начнет пониматься по наливному каналу. При отсутствии питания в статорной обмотке электродвигателя гидротолкателя колодки под действием пружины через стержень, верхний рычаг и шток передают усилие на рычаг. Рычаги, поворачиваясь на пальцах, плотно прижимают колодки к поверхности тормозного шкива, создавая необходимую силу трения. При включении механизма включается и электродвигатель электрогидротолкателя. После выключения электродвигателя гидротолкателя пружина снова прижимает колодки к шкиву.

    К преимуществам электрогидравлических толкателей в сравнении с электромагнитами относят возможность регулирования времени срабатывания тормоза, плавное нарастание тормозного момента, большое число включений, высокую долговечность, простоту эксплуатации, бесшумность и пр.

    3. Техника безопасности при обслуживании мостовых кранов

    Безопасная работа грузоподъемных кранов может быть обеспечена путем соблюдения требований нормативных документов по технике безопасности. Организация службы по соблюдению требований безопасности труда при эксплуатации кранов должна осуществляться в соответствии со СНиП 12-03-99 «Безопасность труда в строительстве. Часть I. Общие требования», «Правилами устройства и безопасной эксплуатации грузоподъемных кранов». Предприятие, эксплуатирующее кран, назначает ответственных за безопасное производство работ по перемещению грузов кранами на объектах.

    Предприятие - владелец крана согласовывает проект производства работ для установки крана на объекте; проводит частичное и полное техническое освидетельствование крана; периодически проверяет (осматривает) состояние крана и опорного основания; проверяет соблюдение установленного Правилами Госгортехнадзора РФ порядка допуска рабочих к управлению и обслуживанию крана; участвует в комиссиях по аттестации и периодической проверке знаний требований безопасности труда машинистом (крановщиком) и обслуживающим персоналом, принимает меры по соблюдению требований безопасности труда при эксплуатации крана и устранению неисправностей его составных частей и сборочных единиц; назначает машиниста (крановщика) для работы на кране и обеспечивает его производственной инструкцией по безопасному ведению работ.

    Предприятие, эксплуатирующее кран, обеспечивает объект проектом производства работ (ППР); составляет перечень применяемых мероприятий, обеспечивающих безопасное производство работ в зоне действия крана; устраивает подкрановые пути для движения крана у строящегося сооружения; проверяет выполнение технического освидетельствования съемных грузозахватных приспособлений и их маркировку; назначает стропальщиков для обвязки и зацепки грузов при их перемещении краном; определяет и указывает машинисту и стропальщикам место и порядок безопасного складирования и монтажа конструкций; инструктирует машиниста (крановщика) и стропальщиков по вопросам безопасного выполнения предстоящей работы; не допускает без наряда-допуска производства монтажных и погрузочно-разгрузочных работ кранами вблизи линии электропередачи; обеспечивает в соответствии с нормами освещение места производства работ в ночное время; не допускает в рабочую зону крана посторонних лиц; обеспечивает сохранность крана по окончании смены.

    В Инструкции по монтажу указывается, при какой скорости ветра должны быть прекращены работы по монтажу, демонтажу крана. Запрещается проводить монтажные работы на высоте при гололеде, в ночное время, в грозу, туман и при температуре воздуха ниже -20° С. Вести монтаж ночью можно только в случае аварии. Запрещается спускать или поднимать башню ночью. При работе в темное время монтажная площадка должна быть освещена. При гололеде монтажная площадка должна быть посыпана песком. Кран перед подъемом очищают от снега и льда. Не допускается применение обледенелых канатов для строповки. Управлять механизмами крана при монтаже разрешается только монтажникам, имеющим соответствующее удостоверение. При монтаже и демонтаже крана запрещается: крепить элементы конструкции неполным количеством болтов; устанавливать кран у котлована с неукрепленными откосами; вести в зоне монтажа или демонтажа какие-либо работы, не относящиеся непосредственно к монтажу.

    Для уменьшения воздействия опасных и вредных производственных факторов работы по перемещению грузов кранами, техническому обслуживанию и ремонту машинист (крановщик) должен выполнять, применяя средства индивидуальной защиты. Основным средством защиты от производственных загрязнений и механических повреждений служит спецодежда: костюм мужской или женский, состоящий из куртки с брюками или полукомбинезоном. Спец обувь предназначена для защиты ног машиниста от холода, механических повреждений, масла и т.п. Для работ на открытом воздухе в зимнее время машинист (крановщик) одевает ватную куртку, брюки и валенки, которые весной он сдает на летнее хранение. Для защиты рук от механических повреждений при проведении работ по техническому обслуживанию и ремонту крана машинист должен пользоваться специальными рукавицами. Каска необходима для защиты головы от механических повреждений и поражения электрическим током. Машинисту (крановщику) выдается каска темного или оранжевого цвета. Каски белого цвета предназначены для менеджеров. Каски могут снабжаться устройствами для защиты от шума. При проведении работ на высоте машинист (крановщик) должен пользоваться предохранительным поясом.

    Перед началом работы машинист (крановщик) осматривает кран, проверяет исправность тормозов и приборов безопасности, знакомится с рабочей зоной на объекте и устанавливает кран в ней в соответствии с проектом производства работ, проверяет исправность подкрановых путей, грузозахватных устройств; определяет маркировку перемещаемых грузов, знакомится с опасными грузами и веществами. Машинист (крановщик) участвует в ЕО1) просматривает записи в вахтенном журнале и, если может, устраняет зафиксированные в этом журнале неполадки крана или сообщает о них до начала работы лицу, ответственному за исправное состояние крана. Запрещается приступать к работе, если при этом выявлены неисправности: трещины или деформация в несущих металлоконструкциях крана ослабленные зажимы в местах крепления канатов, сверхнормативные обрывы проволок или поверхностный износ, повреждения деталей тормоза грузовой лебедки и устройств безопасности.

    Перед пуском крана с него убирают все приспособления, инструменты и незакрепленные детали; убеждаются, что правильно и надежно установлены плиты противовеса и балласта, рельсовые противоугонные захваты; удаляют людей с крановых путей.

    Во время работы машинист (крановщик) выполняет следующее:

    не допускает на кран посторонних лиц;

    проверяет уклон площадки, на которой стоит кран; допускается уклон не более 3°;

    соблюдает расстояние от бровки котлована или траншеи до ближайшей опоры (колеса, гусеницы, выносной опоры) крана;

    выполняет рабочие движения по сигналу стропальщика;

    контролирует массу поднимаемых грузов и вылет по указателю в кабине или закрепленному на стреле);

    перед подъемом груза предупреждает стропальщика и всех находящихся около крана о необходимости освободить рабочую зону крана;

    устанавливает грузозахватное устройство так, чтобы исключить косое натяжение грузового каната (при подъеме груза расстояние между ним и крюковой подвеской должно быть 0,5 м);

    перемещаемые в горизонтальном направлении грузы приподнимает на 0,5 м выше встречающихся на пути предметов; следит за отсутствием людей в просвете между поднимаемым или опускаемым грузом и выступающими частями, зданий и транспортных средств;

    приостанавливает работу крана при неравномерной укладке каната или спадании его с барабана.

    Запрещается:

    без наряда-допуска устанавливать кран или перемещать груз на расстояние ближе 30 м от крайнего провода действующей линии электропередачи;

    одновременно работать имеющимися на кране двумя механизмами подъема (основном и вспомогательным);

    выполнять рабочие движения на взрывопожароопасной территории без присутствия лица, ответственного за перемещение грузов кранами;

    допускать к обвязке и зацепке грузов рабочих, не имеющих прав стропальщика;

    поднимать грузы неизвестной массы;

    поднимать защемленные грузом грузозахватные устройства и железобетонные изделия с поврежденными петлями.

    Перемещать грузы электромагнитной плитой разрешается только в специально отведенных местах склада (пункта грузопереработки). При разгрузке автомашин не разрешается перемещать электромагнитную плиту с грузом над кабиной автомашины, а при разгрузке железнодорожных вагонов - над составом. Необходимо постоянно следить за правильностью намотки кабеля подъемного электромагнита на барабан. Машинист не имеет права покидать кабину, если на электромагнитной плите есть груз. При работе с грейфером необходимо следить, чтобы челюсти плотно закрывались. Нельзя допускать сильного ослабления грузового каната и выхода его из ручья барабана.

    При приближении грозы и ураганного ветра опускают груз и прекращают работу.

    По окончании смены машинист (крановщик) обязан: не оставлять груз в подвешенном состоянии; поставить кран в отведенное для него место и закрепить его; остановить силовую установку и при питании крана от внешнего источника выключить рубильник; сообщить своему сменщику о всех неполадках в работе крана и сделать соответствующую запись в вахтенном журнале. При работе в стесненных условиях соблюдают ограничение рабочих движений крана, выставляют предупреждающие и запрещающие знаки безопасности.

    Ответственный за безопасное производство работ на строительной площадке и инженерно-технический работник, осуществляющий надзор за безопасной работой кранов, обеспечивают своевременное оповещение машиниста (крановщика) о резких переменах погоды (пурга, ураганный ветер, гроза, сильный снегопад). Нельзя оставлять без надзора кран с работающей силовой установкой и открытыми дверцами кабин.

    Техническое обслуживание (ТО) кранов в условиях строительной площадки приходится выполнять при отсутствии постоянных рабочих мест и в различных погодных условиях. Это представляет повышенные требования к обеспечению безопасных условий труда. Для выполнения ТО выбирают ровную (чтобы исключить возможность самопроизвольного перемещения машины под воздействием силы тяжести) свободную от посторонних предметов площадку с твердым нескользким покрытием на расстоянии не менее 50 м от мест хранения нефтепродуктов. Под колеса кранов подкладывают колодки, стрелы опускают до упора. С электрифицированных кранов снимают напряжение и вывешивают предупредительные надписи. Пользуются только исправными инструментами, домкратами и приспособлениями. Инструмент, запасные части, приспособления их нужно поднимать на кран только в специальной сумке или с помощью веревки. Устанавливают сборочные единицы и составные части на подставки и козлы, испытанными на грузоподъемность. Операции ТО с ходовыми колесами производят после выпуска воздуха из камер. При мойке крана под большим давлением струи отлетающая грязь может попасть в лицо и глаза. Сборочные единицы очищают сжатым воздухом, пользуясь защитными очками. Во время заправки крана машинист (крановщик) становится так, чтобы ветер не относил на него пары и брызги топлива. Операцию выполняют в рукавицах. При доливе воды в систему охлаждения пробку радиатора открывают медленно, чтобы пар из него выходил постепенно во избежание ожога горячим паром лица и рук. Зимой для заливки горячей воды используют металлические ведра с насадкой, позволяющим направлять струю воды. Применять самодельные ведра (например, из резиновых камер) запрещается. При использовании пара для нагрева двигателей соблюдают меры предосторожности. Шланг с паром, вставив в горловину радиатора, закрепляют, чтобы предупредить его выпадение. Масло в картере и рабочая жидкость в гидрооборудовании при работе крана находятся в горячем состоянии, поэтому их сливают осторожно в специальные емкости.

    Для предотвращения самопроизвольного открывания дверей кабин замки должны быть исправными. Двери кабин должны плотно закрываться, так как через отверстия просачивается пыль и загрязняется воздух. Особое внимание обращают на наличие чехлов в местах прохождения рычагов и педалей. Подушку и спинку сиденья содержат в хорошем техническом состоянии, не допускается провалов, выступающих пружин и острых кромок.

    Грузоподъемные краны имеют электрический привод и относятся к электроустановкам напряжением 1000 В. «Правила технической эксплуатации электроустановок потребителей» и «Правила техники безопасности при эксплуатации электроустановок» потребителей требуют, чтобы машинисты мостовых и электрических грузоподъемных кранов имели определенные знания по электротехнике и электрооборудованию кранов, знали и умели оказывать первую помощь при поражении электрическим током. Тело человека является хорошим проводником электрического тока, в зависимости от многих причин и условий воздействие электрического тока может быть от легкого, едва ощутимого судорожного сокращения мышц пальцев рук, до прекращения работы сердца или легких, т.е. смертельного поражения.

    Поражение электрическим током происходит при замыкании электрической цепи через тело человека, поэтому машинист (крановщик) должен быть обеспечен защитными средствами. По степени надежности изолирующие защитные средства делятся на основные и дополнительные. Основными считаются те защитные средства, изоляция которых может надежно выдерживать напряжение установки и посредством которых допускается непосредственное прикосновение к токоведущим частям находящимся под напряжением. Дополнительными являются защитные средства, служащие для усиления действия основных средств и для защиты от напряжения прикосновения и шагового напряжения. В крановых электроустановках основными защитными средствами являются изолирующие перчатки, а дополнительными средствами - изолирующие галоши и коврики. При поражении электрическим током необходимо как можно скорее освободить пострадавшего от действия тока, так как от продолжительности этого действия зависит тяжесть электротравмы. При этом необходимо помнить, что прикасаться к человеку, находящемуся под напряжением, можно только при условии принятия необходимых мер предосторожности. Меры первой помощи будут зависеть от состояния пострадавшего после освобождения его от действия электрического тока.

    Заключение

    Мною разработан проект электрооборудования мостового крана грузоподъемностью 35т.

    В общей части курсового проекта указаны основные требования, предъявляемые к электрооборудованию крана, который предназначен для производства грузоподъемных работ. С помощью мостового крана достигаются высокие темпы производства. Он обеспечивает обслуживание большой площади рабочей зоны, равной ходу грузовой тележки, умноженной на длину подкранового пути.

    В расчетной части проекта произведен расчет и выбор мощности электродвигателя грузоподъемного механизма. Произведен проверочный расчет элементов силовой цепи. Выбрана аппаратура защиты и управления.

    Выбранное электрооборудование соответствует нормам ПУЭ.

    Коммутационная аппаратура может осуществлять защиту потребителей от перегрузки и коротких замыканий.

    В разделе «Техника безопасности» описаны вопросы техники безопасности при обслуживании кран.

    Считаю, что выбранное мной электрооборудование позволит уменьшить простои при работе крана, улучшить эксплуатационные свойства и повысить надежность и безопасность работы.

    Литература

    1. Александров К.К., Кузьмина Е.Г. Электротехнические чертежи и схемы - М.: Энергоатомиздат, 1990, 288 с.

    Барыбин Ю.Г., Федоров Л.Е. Справочник по проектированию электроснабжения - М.: Энергоатомиздат, 1990, 576 с.

    Карпов Ф.Ф, Козлов В.Н. Справочник по расчету проводов и кабелей - М.: Энергия, 1969, 264с.

    Зимин Е.Н. Электрооборудование промышленных предприятий и установок - М.: Энергоатомиздат, 1991

    5. Межотраслевые правила по охране труда (правила безопасности) при эксплуатации электроустановок - СПб.: Издательство ДЕАН, 2001, 208 с.

    6. Пижурин П.А. Справочник электрика лесозаготовительного предприятия - М.: Лесная промышленность, 1988, 363 с.

    Пижурин П.А. Электроборудование и электроснабжение лесопромышленных и деревообрабатывающих предприятий - М: Лесная промышленность, 1993, 263с.

    Правила устройства электроустановок - М.: Главгосэнергонадзор России, 2001, 6 издание.

    Правила устройства электроустановок - СПб.: Издательство ДЕАН, 2002, 928с.

    airsoft-unity.ru - Портал майнингов - Виды бизнеса. Инструкции. Компании. Маркетинг. Налоги